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Executive Summary
Purpose
The technology industry has shifted towards patterns of development and deployment 
that are seen as “cloud native”.  Simultaneously, the ecosystem of technologies, products, 
standards, and solutions is expanding, challenging decision makers to remain abreast of 
complex designs.  The CISO role in particular, has the evolving responsibility of illuminating 
business value propositions in this dynamic arena.  Meanwhile, cloud native patterns have 
also encouraged changes in consumption models and the adoption of modern workflows 
(e.g. agile methodologies and DevOps processes) requiring integrated security practices.

Problem Analysis
Security concerns within this landscape are complex because of the explicit focus on rapid 
development and deployment in addition to impracticality of traditional perimeter-based 
security.  This complexity requires a paradigm shift to protect applications by migrating 
from a perimeter based approach to one where security moves closer to dynamic workloads 
that are identified based on attributes and metadata (e.g. labels and tags). This approach 
identifies and secures workloads to meet the scale needs of cloud native applications while 
accommodating constant flux. 

These paradigm shifts require the adoption of increased automation in the application 
security lifecycle and secure by design architectures (e.g. Zero Trust). The embrace of 
containerization as one of the central transformations in the cloud native environment also 
requires new best practices.  The tradeoffs for a secure implementation continue to involve 
multiple stakeholders within an organization, and significantly impacts developer and 
operator productivity in pursuit of business objectives.  Cloud native applications still require 
development, distribution, deployment, and operation but the paradigm dictates new security 
mechanisms by which these objectives are efficiently achieved. 

Cloud native development can be modeled in distinct phases that constitute the application 
lifecycle: “Develop,” “Distribute,” “Deploy,” and “Runtime.” Cloud native security contrasts 
with traditional security approaches in that there is a tremendous opportunity to ensure that 
security is injected throughout these distinct phases instead of bookending the lifecycle with 
separately managed security informed interventions.

It is critical to note that without perpetual education and training on use and integration of 
these concepts, tools, and processes, adoption and application will not persist and may revert.
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Lifecycle Phases

Develop
Cloud native tools are meant to introduce security early in the application lifecycle. 
Security testing needs to identify compliance violations and misconfigurations early in 
order to create short and actionable feedback cycles for continuous improvement. This 
approach enables security failures to follow familiar workflows raised for other issues 
in the pipeline (e.g. bug fixes or CI failures), which already require resolution prior to 
moving software further in the pipeline. 

The modern security lifecycle for this model revolves around the development of code 
that adheres to recommended design patterns (e.g. 12-factor) and ensures the integrity 
of the workload delivered.  Cloud native is conceptually tied to Infrastructure as Code 
(IaC) practices and are meant to ensure controls are operating as intended with early 
security check integrations .  These controls and integrations identify misconfigurations 
and implement best practices in IaC and orchestration manifests as early to reduce long 
term cost and increase security value.

Distribute
Software supply chain safety is especially critical in models that enable faster software 
iteration. Cloud native application lifecycles need to include methods for verifying 
not only the integrity of the workload itself but also the process for workload creation 
and means of operation.  This challenge is amplified by the necessary, practical, and 
consistent use of open source software and third party runtime images, including layers 
of upstream dependencies.

Artifacts (e.g container images) present in the lifecycle pipeline require continual automated 
scanning and updates to ensure safety from vulnerabilities, malware, insecure coding 
practices, and other malfeasance.  Upon completing these checks, it is important to 
cryptographically sign artifacts to ensure integrity and enforce non-repudiation.

Deploy
Security integrated  throughout the development and distribution phases allows for the 
real-time and continuous validation of candidate workload attributes (e.g. signed artifacts 
are verified, container image and runtime security policies are ensured, and host suitability 
can be validated).  Secure workload observability capabilities, deployed alongside the 
workload, allow for logs and available metrics to be monitored with a high level of trust, 
complementing integrated security.
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Runtime
Cloud native environments are expected to provide policy enforcement and resource 
restrictive capabilities by design. Runtime resource constraints (e.g. Linux kernel cgroup 
isolation) for workloads are an example of restrictive and observability primitives integrated 
into higher levels of the application lifecycle in a cloud native environment.  The cloud native 
runtime environment can itself be broken down into layers of interrelated components with 
distinct security concerns1 (e.g. hardware, host, container image runtime, orchestration).  
 
Within the cloud native runtime environment, the microservice architecture for applications 
has been adopted by industries and organizations worldwide. Applications are often 
composed of several independent and single purpose microservices which communicate 
with each other via service layer abstractions which the container orchestration layer makes 
possible. Best practices to secure this interrelated component architecture involves ensuring 
that only sanctioned processes operate within a container namespace, prevention and 
notification of unauthorized resource access, and network traffic monitoring to detect hostile 
tooling activity.  Service Mesh is another common abstraction that provides consolidated 
and complementary functionality for orchestrated services without imposing changes on the 
workload software itself (e.g. logging of API traffic, transport encryption, observability tagging, 
authentication, and authorization). 

Recommendations
Cloud native security seeks to ensure the same conditions of diligence, integrity, trust, 
and threat prevention as traditional security models while integrating modern concepts of 
ephemerality, distribution, and immutability. In these rapidly changing environments, prone 
to fail-forward for iteration, automation inline with the development pipeline is required 
for secure outcomes.  Organizations must earnestly analyze and apply these core security 
concepts to alleviate delay in applying hardening and environmental controls, and need to 
hold engaged third parties to the same standard while balancing perpetual education and 
training relevant to the cloud capabilities and security proponents for their own workforce.
 
With additional layers of complexity and a broad mesh of components to care for, protection 
from unauthorized access must be accomplished by integrating security throughout the 
lifecycle and into the runtime environment.  It is highly recommended organizations evaluate 
the security defense stack against the relevant attack frameworks2 to achieve clarity about 
which threats a defense stack covers. Additionally, organizations need to adopt approaches 
and methodologies that shift security left3, amplify DevOps, and reach beyond to the next 
technology horizon so continued, proper checks of all components before, within, and after 
the pipeline are verified with any innovation brought into the lifecycle.

1 Another model to consider is Cloud, Clusters, Containers, and Code: https://kubernetes.io/docs/concepts/security/overview/
2 Shifting security left often leaves organizations to lapse operational security monitoring.  It is important that security exists in all parts of the 
lifecycle and organizations continually evaluate other aspects of their business and technology processes where they may reach beyond modern 
security paradigms to embrace security as a culture and habit.
3 Example - MITRE ATT&CK Framework for Kubernetes

https://kubernetes.io/docs/concepts/security/overview/

https://www.devsecops.org/blog/2016/5/20/-security
https://www.darkreading.com/threat-intelligence/microsofts-kubernetes-threat-matrix-heres-whats-missing/a/d-id/1339106
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Conclusion
Cloud native security, when executed strategically across an organization, can provide 
high availability, assurance, resilience, and redundancy at scale ensuring  customers and 
developers have secure access to required resources  at the velocity they expect.  Security 
itself remains an interdisciplinary field that cannot be isolated from the development lifecycle 
or treated as a purely technical domain.  Developers, operators, and security personnel must 
all partner, exchange, and collaborate to continue to move the field and industry forward. As 
with any technical innovation, it is the people, their passion, and the journey that genuinely 
make the community and cloud native security possible.
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Introduction
This paper intends to provide organizations and their technical leadership with a clear 
understanding of cloud native security, its incorporation in their lifecycle processes, and 
considerations for determining the most appropriate application thereof.  Cloud 
native security is a multi-objective and multi-constrained problem space spanning 
many areas of expertise and practice.  Nearly all Day 1 and Day 2 operations overlap 
with the security domain, ranging from identity management to storage solutions.  
However, cloud native security covers much more than these areas; it is also a 
human problem space, incorporating individuals, teams, and organizations.  It is the 
mechanisms, processes, and intent by which humans and systems interact with and 
make changes to cloud native applications and technology.

Target Audience
Our target audience is the Chief Security Officer (CSO), Chief Information Security Officer 
(CISO), or Chief Technology Officer (CTO) of a private enterprise, government agency, 
or non-profit organization who wishes to deliver a secure cloud native technology 
ecosystem. Additional organizational stakeholders may include Project, Product, 
Program managers, and Architects responsible for designing and implementing 
secure, cloud native products and services. Apart from this, anyone with a keen 
interest in cloud native security can refer to this document.
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Cloud Native Goals
The adoption and innovation involving containers and microservices architectures have 
brought with it its fair share of challenges.  The need to mitigate cybersecurity vulnerabilities 
has systematically climbed the priority ladder in modern organizations.  As innovation 
around cloud adoption accelerates, the threat landscape also increases.  Security leaders 
are tasked with protecting assets, both human4 and non-human, by adopting practices to 
prevent, detect, and respond to cyber threats while meeting strict compliance requirements.  
A common historical narrative has been that security implementations impede the speed and 
agility of DevOps teams.  Therefore, security leadership must implement tighter integration and 
bidirectional understanding to empower DevOps teams to create shared cyber risk ownership.

Secure cloud native adoption patterns and architectures that the organizations need to 
adopt must be shared to ensure that the industry is enforcing security practices with high 
priority and integrating it throughout the modern application development lifecycle.   Most 
importantly, highlighting the synergies of security architecture with the security leaders and 
aligning organization’s objectives towards security in terms of Vulnerability Management, 
Zero Trust, Cloud Security, and DevSecOps should be a top priority. 

The concepts described throughout this paper are not designed to favor one service or 
component product over another and can be applied regardless of service selection.

This document does not intend to provide general education on security concepts or cloud 
computing concepts.  It also does not recommend specific technologies or tools; however, it 
may cite examples of technology or tools that address the topic discussed.

Beyond the recommendations in this document, specific data security handling practices 
related to data protection and privacy regulatory mandates, e.g. GDPR, PCI DSS, may 
need additional regulatory-specific consideration. We recommend readers consult 
appropriate independent resources for guidance on any such technical controls and 
compliance risk matters.

Assumptions
The CNCF defines cloud native within the CNCF Technical Oversight Committee’s (TOC) GitHub 
repository.  This paper does not seek to change this definition or expand upon it.

As cloud native adoption and modern software development methodologies continue to evolve, 
the technologies that comprise an effective cloud native stack will continue to shift over time.  
Representations of this shifting stack are included in the all encompassing cloud native landscape.  

The term ‘workloads’ within this document covers any products, projects, applications, and 
systems that have or will be developed, maintained, distributed, or deployed to a cloud-based 
runtime environment.

3 Human capital is a vital asset necessary to the success of any organization, the corresponding intellectual property and relational 
capital brought as a result is equally in need of protection.

https://www.cncf.io/
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://landscape.cncf.io/
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Cloud Native Layers

Figure 1
 
The cloud native stack is composed of the layers of the foundation, lifecycle, and environment. 
The cloud native stack can be adopted using different deployment models: IaaS, PaaS, 
CaaS, and FaaS. Each deployment model provides additional abstractions that ease the 
management and operation of cloud native environments.  As some of these models are 
considered well known and in use for years, we will focus on models specific to cloud native.

The Containers-as-a-Service (CaaS) model allows users to orchestrate and otherwise manage 
containers, applications and clusters by leveraging a container-based virtualization platform, 
an application programming interface (API), or a web portal management interface. CaaS 
helps users construct scalable containerized applications with security policy embedded 
as code and run them on private cloud, on-premises data centers or public cloud. CaaS 
helps streamline the process of building a container.  With microservice orchestration and 
deployments, it helps enterprises release software faster and allows portability between 
hybrid and multi-cloud environments, thus reducing infrastructure as well as operating 
costs. The CaaS model is cost saving as it  helps enterprises simplify container management 
while giving them a choice to only pay for the CaaS resources they want and use. CaaS has 
containers as its fundamental resource, while for IaaS environments, virtual machines (VMs) 
and bare metal hardware host systems are used.
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The Functions-as-a-Service (FaaS) is  another cloud native deployment model, a type of 
cloud service that allows enterprise users to execute code in response to events without 
the complex infrastructure typically associated with building and launching micro-services. 
Hosting a software application in the cloud usually requires provisioning and managing 
a virtual environment, managing the  operating system and web components, etc. With 
FaaS, the physical hardware, virtual machine operating system, and web server software 
management are all handled automatically by the cloud service provider. Thus allowing users 
to focus on individual functions in the microservices  code while paying for  resources that are 
used and taking  advantage of the elasticity of resources that the cloud provides.
 

Lifecycle
Lifecycle in a cloud native context is the technology, practices, and processes that enable 
resilient, manageable, and observable workloads to run within the context of a cloud 
environment.  As depicted in Figure 1, lifecycle is composed of four continuous phases; 
Develop, Distribute, Deploy, and Runtime.  Each phase extends and amplifies the previous 
while permitting and supporting secure workload execution.

 
Lifecycle Processes 
Management of the supply chain and the curation of applicable security benchmarks are 
critical to a secure implementation.  

Supply Chain
Organizations are responsible for ensuring that the supply chain for workloads they are 
developing are subjected to actionable security analysis within the lifecycle process.  Supply 
Chain security can be broken into two parts: the security of the tools and services that provide 
an environment to create a workload (e.g. developer tooling) and the components that make 
up the workload itself (e.g. libraries, dependencies, and images).  The supply chain needs to 
be implemented in such a way that the integrity of the supply chain itself is verifiable, and 
artifacts produced by the software supply chain can therefore be signed for verification of 
provenance.  As such, an organization must exercise caution when using dependencies 
as upstream dependent packages will inevitably contain security vulnerabilities.  Verifying 
the authenticity and integrity of third-party packages used is essential to ensure that the 
dependencies are as intended and not compromised. 

A primary characteristic of cloud native applications is the reuse of software that is available 
as open source packages and container images that are built and distributed through open 
source container registries.  Consequently, it is critical for developer, operator, and security 
personnel  to ensure that artifacts and dependencies in their applications do not contain 
known sources of malware and vulnerabilities.  The presence of malware in container images 

https://research.swtch.com/deps


11

is a significant attack vector in the runtime environment4.  It is essential to employ on-demand 
and periodic vulnerability scanning of container images and composite packages in the  
CI pipeline as well as in the container registries.

Leveraging these methods permits verifiable, secure software distribution and ongoing 
operation.  Incorporating vulnerability scanning in the workload generation pipeline 
allows an organization to amplify feedback for development teams and has the further 
potential to block insecure or vulnerable updates from being distributed and deployed.  
Periodically scanning software will also allow for escalation of newly identified 
vulnerabilities in existing software.

Security Benchmarks
Utilization of security benchmarks (e.g.  NIST Application Security Container Guide, Center for 
Internet Security (CIS), NIST Security Strategies for microservices, and OpenSCAP) provides 
development teams and organizations with a guide to create “secure-by-default” 
workloads.  Adoption and implementation of these benchmarks enable teams to test for 
a hardened baseline.  However, they cannot take into account data flows and custom 
usage of the platforms under testing.  Security practitioners should implement them as a 
guide rather than a checklist.

The next few sections provide a detailed analysis of the implications, tools, mechanisms and 
best practices to integrate security throughout the application lifecycle. 

Develop

 Figure 2

4 https://blog.aquasec.com/malicious-container-image-docker-container-host

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.p5da9dbie2v2
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3nqyr7f883rx
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.cisecurity.org/http://
https://www.cisecurity.org/http://
https://www.open-scap.org/
https://blog.aquasec.com/malicious-container-image-docker-container-host
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Security for cloud native applications needs to be deployed throughout the entire lifecycle of 
an application.  The “Develop” phase is the first in this cycle, resulting in the creation of the 
artifacts, such as  Infrastructure-as-Code, application and container manifests, etc., that will 
be used to deploy and configure cloud native applications.  Consequently, these artifacts have 
proven to be the source for numerous attack vectors that can be exploited in the runtime.  The 
next few sections elaborate on the various security tools, processes, and checks that need to 
be instituted in this phase to dramatically reduce the attack surface of applications deployed 
in the runtime.  

Security Checks in Development
Security hardening during the development phase forms a critical component in the 
deployment of applications.  This means that security requirements must be introduced  early 
in software development and treated in the same manner as any other requirement. These 
requirements are typically based on business needs around risk and compliance. Addressing 
these needs in the early phases  prevents redoing work later in the lifecycle which slows 
down the DevOps pipeline, and increases overall costs5. DevOps teams must also leverage 
purpose built tools to identify security misconfigurations and vulnerabilities prior to the 
deployment of these applications.  Equally important is that these tools integrate seamlessly 
into existing and familiar tools leveraged by DevOps teams to compliment agility with security 
and not impede it.  For example, tools need to perform the scanning of Infrastructure as Code 
templates as well as application manifests within the developer IDE or when a Pull Request is 
made, and provide rich and contextual security information which can be acted upon rapidly, 
easily, and early in the development pipeline.  Adopting these steps ensure the absence of 
known vulnerabilities  or high risk configurations.  Cloud native components should be API 
driven, allowing for complex debugging tools to interact with the deployed primitive workloads 
that rely on the orchestrator.

Teams should deploy dedicated development, testing, and production environments  to 
provide infrastructure and application developers with an isolated environment  to develop, 
test, and deploy  systems and applications, container base images, VM golden images, and 
non-functional tests.  Some organizations may find leveraging canary deployments, blue-
green or red-black deployments, and other deployment models to be an added efficiency for 
fielding dynamic and interactive testing and feasibility.

 
Development of Tests
Developers, operators, and security personnel  should build tests for code and infrastructure 
that is business-critical, has a high threat-profile, is subject to frequent change, or has/is 
a historical source of bugs.  Threat modeling can identify high-risk and high-impact code 

5 According to Applied Software Measurement, Capers Jones, 1996 and adjusting for inflation - 85% of defects are introduced 
during coding with a cost of $41 to fix compared to a post release fix cost of $26,542.
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hotspots that provide a high return on investment (ROI) for developing tests.  Tests may 
include deployment, operating system, infrastructure and database hardening , application 
testing (static and dynamic source code testing , container configuration), integration 
or system testing (acceptance of application and infrastructure components and their 
interaction), and smoke testing (post-deployment checks against a live system).  Test authors 
should have access to comprehensive development and test environments that enable them 
to perform  rapid test development while reducing continuous integration (CI) feedback loops.  
System test suites should be made available to run locally for authors as well as within a 
shared testing environment.

Code Review 
Minor changes to a workload, or the infrastructure where the workload has been deployed, 
may have far-reaching security consequences.  To mitigate the risk of unintended 
consequences, teams are encouraged to use the “four eyes” principle when conducting code 
review before prior changes are  merged into the codebase (e.g.  implementing a pull request 
in git workflow).
   

Distribute

Figure 3

The “Distribute” phase is responsible for consuming image definitions and specifications 
to build the next stage of artifacts such as container images, VM images and others.  In 
modern continuous integration and continuous deployment paradigms, the “Distribute” 
phase consists of systematic application testing to identify bugs and faults in the software.  
However, the adoption of Open Source and reusable packages results in the incorporation of 

https://www.unido.org/overview/member-states/change-management/faq/what-four-eyes-principle
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vulnerabilities and malware into container images.  It is, therefore, imperative to incorporate 
security focused  steps such as scanning the image for the aforementioned threat vectors 
as well as for validating the integrity of the images to protect against tampering.  The next 
paragraphs elaborate on security best practices that help developers and operators to identify 
and protect container images from threats as well as techniques and tools to secure the 
entire CI / CD pipeline and infrastructure.  Furthermore, organizations may wish to encrypt 
software artifacts if confidentiality is desired or needed.

Should software artifacts become untrusted due to compromise or other incident, teams 
should revoke signing keys to ensure repudiation.
 

Build Pipeline

Continuous Integration (CI) servers should be isolated and restricted to projects of a similar 
security classification or sensitivity. Infrastructure builds which require elevated privileges 
should run on separate dedicated CI servers. Build policies should be enforced in the CI 
pipeline and by the orchestrator’s admission controllers.

Supply chain tools can gather and sign build pipeline metadata. Later stages can then verify 
the signatures to validate that the prerequisite pipeline stages have run.

The reader should ensure that the CI and Continuous Delivery (CD) infrastructure is as secure 
as possible. For example, security updates should be prioritized to be installed ASAP, and 
cryptographic keys should be protected from exfiltration via the use of Hardware Security 
Modules (HSM) or Credential Managers.

 
Image Scanning

Scanning container images is a critical component of securing container applications 
throughout the lifecycle.  It is vital to do the scanning in the CI pipeline before deploying the 
image to production.  Incorporating this capability ensures that developers, operators, and 
security professionals have detailed information on all known vulnerabilities and details 
such as the severity, the CVSS score, and availability of mitigation/fixes.  Incorporating 
vulnerability scans of container images coupled with pipeline compliance rules ensure that  
only sufficiently patched applications are deployed to production, reducing the potential 
attack surface. Scanning of container images also helps to identify the presence of malware 
in open source software packages or base image layers incorporated from open source image 
repositories. Use of container image scanning provides teams with fact of vulnerability or 
malware and does not provide prevention against vulnerabilities or malware.  Organizations 
need to be prudent when choosing to utilize image scanning, placing mechanisms to make 
fact-of information actionable, as well as enforcing organization compliance rules.
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Image hardening
Container images constitute the first level of output from the build pipeline. As such, they 
must include security hardening that takes into consideration the threats to be mitigated 
while allowing some just-in-time configurations at the runtime phase to fit in a larger 
part of the ecosystem.

In respect of the security assurance objectives, the following questions should be evaluated:

•	 Should the execution environment be restricted to a specific user?
•	 Should the resource’s access be limited?
•	 Should process execution be restricted at kernel level?

Container Application Manifest Scanning
Application manifests describe the configurations required for the deployment of 
containerized applications.  As mentioned in the Benchmarks section, guides and 
recommendations such as the NIST 800-190 publication recommend best practice security 
practices and configurations for application containers.  Consequently, it is vital to use tools to 
scan these application manifests in the CI/CD pipeline in order to identify configurations that 
could potentially result in an insecure deployment posture. 

Container application manifest hardening
As for container images, container application manifest hardening can be thought of and be 
implemented at build and as well as runtime.

In respect of the security assurance objectives, the following questions should be evaluated:
•	 What minimal constraints should the runtime execution ecosystem comply with?

Testing
Cloud native applications should be subjected to the same suite and standard of quality 
testing as traditional applications.  These include the concepts of clean code, adherence to 
the Test Pyramid, application security scanning and linting through static application security 
testing (SAST), dependency analysis and scanning, dynamic application security testing 
(DAST) (e.g.  mocking), application instrumentation, and full infrastructure with tests available 
to developers in local workflows. Automated test results should map back to requirements 
for dual attestation (developer and tool) for real-time security assurance to security and 
compliance teams.

Once a security bug has been identified (e.g.  an incorrect firewall or routing rule), if root cause 
analysis determines that it has a reasonable chance of recurring, the developers should write 

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.fxf8spniha0n
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://martinfowler.com/articles/practical-test-pyramid.html
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an automated test to prevent the regression from being repeated.  At the test failure, teams 
received feedback to correct the bug, and with the next merge, the test will pass (assuming it 
was corrected).  Doing so defends against regression from future changes to that code.

Unit testing of infrastructure is preventative control and targets entities and inputs defined 
in Infrastructure-as-Code (IaC) configuration.  Security testing of built infrastructure is 
a detective control and combines assurance, historical regressions, and  unexpected 
configuration detection (firewall rules open to the world, overprivileged IAM policies, 
unauthenticated endpoints, etc.)

Hardening of infrastructure and workloads should be supported by comprehensive test 
suites, which allows for incremental hardening as the system matures.  Tests to verify 
hardening has occurred should exist during the build but also be executed at deployment to 
evaluate any changes or regression that may have occurred throughout the lifecycle.

Static Analysis and Security Testing
Static analysis of IaC, application manifests, and software code may cover linting, identifying 
misconfigurations and vulnerability scanning. IaC code should be subject to the same pipeline 
policy controls as do application workloads.

IaC is gaining popularity and its implementation is rapidly increasing among organizations  to 
deploy cloud and container infrastructure.  Consequently, insecure configurations in these 
templates can result in exposing attack vectors.

These templates should be scanned for insecure configurations and other security controls 
using automated tools before deploying the application and infrastructure artifacts.  Key 
misconfigurations to keep an eye out for include:

•	 Vulnerabilities contained within images specified in the application manifests
•	 Configuration settings, such as containers that can escalate privileges.  
•	 Identification of the security contexts and system calls, which can compromise a system.  
•	 Resource limit settings

Dynamic Analysis
Dynamic analysis of deployed infrastructure may include detecting RBAC and IAM 
configuration drift, validating the expected network attack surface, and ensuring that a 
SOC can detect unusual behavior in dedicated test environments to configure alerting for 
production.  Dynamic analysis is considered to be a part of testing however, it is expected to 
occur in a non-production runtime environment.
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Security Tests
Automated security testing of applications and infrastructure should be an integral focus 
within security teams.  Test suites should be continuously updated to replicate threats in-
line with the organizational threat model and can be reused for security regression testing 
as the system evolves.  Automated security tests increase security and release velocity by 
removing manual security gates, such as validation and manual control implementation  at 
a single checkpoint, which is time-consuming and inadequate.  Automated security testing 
also demonstrates control efficacy on demand by explicitly attempting to carry out the 
threats, thus improving the system’s security and adherence to any embedded compliance 
requirements in real-time.

Artifacts & Images

Registry Staging
Due to the use of open source components that are often pulled from public sources, 
organizations should create several stages of registries in their pipelines. Only authorized 
developers should be able to access public registries and pull base images, which are then 
stored in an internal registry for wide consumption within the organization. It is also advised 
to have separate private registries for keeping development artifacts per team or group, and 
finally a staging or pre-production registry for images ready for production. This enables 
tighter control over the provenance and security of open source components, while enabling 
different types of testing for stages in the CI/CD chain. 

For any registry used, access control through a dedicated authentication and permission 
model must be implemented. Use mutually-authenticated TLS for all registry connections 
(among other interactions within the architecture). 

Signing, Trust, and Integrity
Digital signing of image content at build time and validation of the signed data before use 
protects that image data from tampering between build and runtime, thus ensuring the 
integrity and provenance of an artifact.  Confirmation starts with a process to indicate that 
an artifact was vetted and approved.  The trust confirmation also includes verifying that 
the artifact has a valid signature.  In the simplest case, each artifact can be signed by one 
signer to indicate a single testing and validation process that the artifact has gone through.  
However, the software supply chain is more complex in most cases, and creating a single 
artifact relies on multiple validation steps, thus depending on a conglomerate of entities’ trust. 
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Examples of this are:
•	 Container image signing - the process of signing a container image manifest
•	 Configuration signing - signing of a config file, i.e.  application config files: most 

common in the case of a GitOps approach, where there can be a process to validate 
and check configurations.

•	 Package signing - Signing of a package of artifacts, like application packages. 

For generic software artifacts such as libraries or OCI artifacts, signing these artifacts 
indicates their provenance of approved usage by the organization.  Verification of these 
artifacts is equally crucial in ensuring that only the authorized artifacts are allowed.  It is 
strongly recommended that repositories require mutual authentication to make changes to 
images in registries or to commit code to repositories.  

Encryption
Container Image Encryption encrypts a container image so that its contents are confidential.  
The container image contents are encrypted to ensure that they remain confidential for 
promotion from build time through runtime.  In the event of a compromised distribution, the 
image’s registry contents remain secret, which can help for use cases such as protecting 
trade secrets or other confidential material.
 
Another common use of Container Image Encryption is to enforce container image 
authorization.  When image encryption is coupled with key management attestation and/or 
authorization and credential distribution, it is possible to require that a container image can 
only run on particular platforms.  Container image authorization is useful for compliance use 
cases such as geo-fencing or export control and digital rights media management.

Deploy 

 Figure 4
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The “Deploy” phase is responsible for incorporating a sequence of ‘pre-flight’ checks in order 
to ensure that the applications that are going to be deployed in the runtime environment 
conform and comply with organization wide security and compliance policies.  

Pre-Flight Deployment Checks
Prior to deployment, organizations should verify the existence, applicability, and current state of:

•	 Image signature and integrity 
•	 Image runtime policies (e.g absence of malware or critical vulnerabilities)  
•	 Container runtime policies (e.g absence of excessive privileges) 
•	 Host vulnerability and compliance controls 
•	 Workload, application, and network security policies 

 
Observability & Metrics
Instituting observability and metrics into cloud native architectures delivers security insights 
so appropriate stakeholders can resolve and mitigate anomalies appearing in reporting; tools 
in this area can help collect and visualize this information. Through the use of behavioral and 
heuristic analysis teams can detect and escalate outliers, suspicious events, and unexplained 
calls to appropriate stakeholders. Artificial intelligence (AI), machine learning (ML), or 
statistical modeling are all mechanisms that are encouraged to assist in behavioral and 
heuristic analysis development.

Response & Investigation
An application should provide logs regarding authentication, authorization, actions, and 
failures.  The developer should include this capability as part of planning and design phases.  
These elements provide  a trail of evidence to follow when an investigation takes place and a 
root cause needs to be established.

Forensics capabilities are integral part of any incident response and mitigation activity.  
They provide  evidence to determine the root cause of an incident and provide feedback for 
any mitigation to be put in place. The short lived nature of the container environment requires 
a more agile toolset to capture and analyze any evidence. Integrating forensics capabilities 
into an incident response plan and procedures will provide the means to acquire and process 
evidence, decrease the time to determine root cause, and minimize exposure to  
a compromise.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.tlhq6ssgript
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Runtime Environment

Figure 5

The Runtime phase comprises three critical areas: compute, access, and storage.  While the 
runtime environment is dependent on the successful completion of the develop, distribute, 
and deploy phases, the security of the runtime is dependent on the efficacy of the security 
practices of the prior phases. The following paragraphs detail the security requirements and 
implications for each of these critical components. 

Compute
Cloud native compute is a highly complex and continually evolving construct.  Without 
core components to make compute utilization occur, organizations cannot ensure 
workloads are secure.  

Considering that containers provide software based virtualization for multi-tenant 
applications on a shared host, it is important to use a container specific operating system, 
which is a read-only OS with other services disabled. This helps in reducing the attack surface.  
This also provides isolation and resource confinement that enables developers to run isolated 
applications on a shared host kernel.  To allow defense in depth it’s also recommended to not 
allow disparate data sensitive workloads be run on the same OS kernel.  

In order for security to span all layers of container platforms and services, a hardware 
root of trust based in Trusted Platform Module (TPM) or vTPM can be used.  The chain of 
trust rooted in hardware can be extended to the OS kernel and  its components to enable 
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cryptographic verification of trusted boot, system images, container runtimes, and 
container images, and so on.

Operating systems provide basic system components like crypto libraries used for remote 
connections and kernel functions that are used for process initiation, management etc. These  
can have vulnerabilities and, because they provide underlying compute baseline for the 
containers they can impact all the containers and apps that run on these hosts.  At the same 
time improperly configured containers can impact the host kernel security and hence all the 
services running in containers running on that host.  Refer the details within the Distribute 
phase for more information.

Orchestration
Any orchestrator has several components that are separated into different planes, such 
as control and data.  Sometimes, there is a need to have a higher-level construct of multi-
deployment management responsible for maintaining state across several different control 
planes that co-exist independently of each other. 

Any orchestration system has a number of threats that impact the overall security of the 
deployment and continued security at runtime.  Malicious access to an orchestrator’s API, 
unauthorized access and changes to the key-value store, orchestrator dashboard to control 
clusters, intercept control plane traffic, API misuse, intercepting application traffic, and so on 
are all potential threat areas.  It is important to use best practices and configuration hardening 
for any orchestrator to prevent exposure to these threats, several exist.  It is also important to 
monitor and detect any changes to the initial configurations made in runtime to ensure the 
continued security posture of the cluster.  Other security best practices such as minimizing 
administrative access to the control plane, segregation of duties and principle of least 
privilege should be enforced.

Security Policies
It is essential to consider the security features and various configuration options of your 
orchestrator to control the security privileges  the container runtime can use to spawn 
containers.  The use of higher level policy and governance constructs may enforce those 
security guardrails.
 

Resource Requests and Limits
Applying different object level and resource requests and limits via cgroups helps prevent 
exhaustion of node and cluster level resources by one misbehaving workload due to an 
intentional (e.g., fork bomb attack or cryptocurrency mining) or unintentional (e.g., reading 
a large file in memory without input validation, horizontal autoscaling to exhaust compute 

5 CIsecurity.org maintains a listing of benchmarks for hardening

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.poslf4b0b0ms
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.poslf4b0b0ms
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
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resources) issue.

Audit Log Analysis
Audit Log analysis is one of the most established methods to identify and correlate system  
compromise, abuse, or misconfiguration.  Continued automation of audit log analysis and 
correlation is of paramount importance to security teams as cloud native architectures 
are capable of generating more granular audit configuration and filtering than traditional 
legacy systems for workloads.  Additionally, the interoperability of cloud native logs 
allows for advanced filtering to prevent overloads in downstream processing.  What is 
critical here, as with traditional log analysis, is the generation of actionable audit events 
that correlate/contextualize data from logs into “information” that can drive decision 
trees/incident response.

Non-compliant violations are detected based on a pre-configured set of rules that filter 
violations of the organization’s policies.

To have the ability to audit actions of entities using the cluster, it is vital to enable API auditing 
with a filter for a specific set of API Groups or verbs, either of interest to a security team, 
cluster administrators, or other teams by field of study.  Immediate forwarding of logs to a 
location inaccessible via cluster-level credentials also defeats an attacker’s attempt to cover 
their tracks by disabling logs or deleting their activity logs.  The systems processing alerts 
should be periodically tuned for false positives to avoid alert flooding, fatigue, and false 
negatives after security incidents that were not detected by the system.

Control Plane Authentication and Certificate Root of Trust
The orchestrator administrators should configure all orchestrator control plane components 
such as controller-manager, scheduler, API server, and kubelet (if applicable) to communicate 
via mutual authentication and certificate validation with a periodically rotated certificate in 
addition to existing control plane hardening.  The issuing CA can be a default orchestrator CA 
or an external CA.  Particular attention should be given by the administrators to protect the 
CA’s private key.  For more information on extending or establishing trust, refer to the identity 
portion of this paper.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3f703zlu80we
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3f703zlu80we
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Secrets Encryption
It is possible to manage secrets in a container orchestration or deployment environment 
through use of an external secrets manager or natively using the orchestrator’s secrets.  
When using a native secret store, it is crucial to be aware that several different protection 
methods are available:

•	 Encryption with an external Key Management Store (KMS)
•	 Leveraging a KMS is a secure way to protect secrets in the orchestrator secret store 

where key encryption in an external KMS encrypts the Data Encryption Key (DEK) 
that encrypts the secrets stored at rest in etcd.  This method does have an option to 
cache DEKs in memory to reduce the dependency on the availability of the external 
KMS and faster decryption of secrets during pod creation time.

•	 Encryption managed by orchestrator
•	 This methodology encrypts the secrets stored in the orchestrator, but the encryption 

key is also managed by the orchestrator (e.g., a config file of the orchestrator).

•	 No encryption
•	 For example, with some orchestrators, secrets are base64 encoded and stored in 

clear-text in the key-value store by default 

Using an external secrets manager can limit the risks of using unencrypted secrets and 
ease the complexity of key management. Most of the time those tools are provided as 
controllers or operators that can inject secrets at runtime and handle their rotations 
transparently. 

Containers
 
Runtime
The runtime environment of a container needs to be monitored and secured from a 
process, file, and network perspective.  Only sanctioned capabilities and system calls (e.g. 
seccomp filters), should be allowed to execute or be invoked in a container by the host 
operating system.  Changes to critical mount points and files should be monitored and 
prevented.  Configuration must prevent changes to binaries, certificates, and remote access 
configurations.  The configuration must also prevent ingress and egress network access 
for containers to only what is required to operate.  Additionally, network traffic to malicious 
domains should be detected and denied.
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Microservices and Eliminating Implicit Trust 
The perimeter for containerized applications deployed as microservices is the microservice 
itself. Therefore, it is necessary to define policies that restrict communication only between 
sanctioned microservice pairs. The inclusion of zero trust in the microservice architecture 
reduces the blast radius by preventing lateral movement should a microservice be 
compromised. Operators should ensure that they are using capabilities such as network 
policies to ensure that east-west network communication within the container deployment is 
limited to only that which is authorized for access. There is some initial work done to provide 
strategies for microservices security through NIST SP 800-204 and may serve as a guide for 
implementing secure microservice architectures.

 
Image Trust & Content Protection
Utilization of a policy agent to enforce or control authorized, signed container images allows 
organizations to provide assurance of the image provenance for operational workloads.  
Further, inclusion of encrypted containers allows for the protection of sensitive sources, 
methods, or data that exist within the container.

 
Service Mesh 
A service mesh provides connectivity between the services that adds additional capabilities 
like traffic control, service discovery, load balancing, resilience, observability, security, and 
so on.  A service mesh allows microservices to offload these capabilities from application-
level libraries and allows developers to focus on differentiating business logic.  In order to 
effectively ensure secure communications between services in cloud native environments, 
organizations should implement a service mesh to eliminate implicit trust within their 
pods and across workloads, achieved through data-in-motion encryption.  Utilization of a 
service mesh also resolves identity issues where traditional layer 3 and layer 4 identities, IP 
addresses, no longer cleanly map to workloads.  Service mesh provides not only network level 
isolation and security but also network-level resiliency capabilities such as retry, timeout, and 
implementing various circuit-breaker capabilities.  Streaming platforms can benefit from a 
service mesh for added security by using workload level authorization to set access rules for 
topics or brokers.

It is important to note that implementation of a service mesh can help reduce the attack 
surface of a cloud native deployment, and provide a key framework for building zero trust 
application networks. 

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3nqyr7f883rx
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.ukcqa325efui
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.8999rr470gwb
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
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Detection at Runtime
Monitoring deployed workloads should provide teams with validation that the true operational 
state is the expected state.  Organizations cannot forgo periodic security scanning and 
monitoring within their environments without turning their workloads into an unsupervised 
playground for attackers.  Utilization of components that detect, track, aggregate and report 
system calls and network traffic from a container should be leveraged to look for unexpected 
or malicious behavior.  

While regression testing and security tests can help prevent known, expected issues from 
moving to production environments, they cannot stop everything.  Workloads should be 
dynamically scanned to detect malicious or insidious behavior for which no known occurrence 
yet exists.  Events such as an extended sleep command that executes data exfiltration from 
etcd after the workload has been running for X amount of days are not expected in the majority 
of environments and therefore are not included in security tests.  The aspect that workloads 
can have time or event delayed trojan horses is only detectable by comparing to baseline 
expected behavior, often discovered during thorough activity and scan monitoring.

Further, workloads will become vulnerable at the time of or after they are deployed.  
Organizations should continuously scan their environments to detect which workloads 
are now vulnerable.  Understanding the make-up or bill of materials for each workload can 
help organizations quickly identify where vulnerabilities lie.  Additional information about 
those vulnerabilities, such as exploit maturity, and vulnerable path in use are critical to 
determining the actual risk to workloads and can help organizations prioritize updates to 
at-risk applications.

Functions
Serverless functions are susceptible to various attacks and  therefore need to be 
appropriately protected.  Processes must execute only functions explicitly defined in an 
allow list. Additionally, functions should not be allowed to make changes to critical file 
system mount points.

The functions must have restrictions that only allow access to sanctioned services, either 
through networking restrictions or least privilege in permission models.  Additionally, the 
egress network connection must be monitored by administrators to detect and, where 
possible, prevent access to C&C (command and control) and other malicious network 
domains.  Ingress network inspection must also be considered in order to detect and remove 
malicious payloads and commands that can be used in exfiltration.  For instance, SQL 
injection attacks can be detected using inspection.

Serverless functions have a number of threats and controls available for tenants are limited.  
Broken authentication and insecure API integrations with dependent services are some 

https://www.ntia.gov/SBOM
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of these issues.  Ensuring all serverless functions are run in tenant-based resource or 
performance isolation for similar data classifications may assist in resolving this, however, 
they can impact the performance due to limitations in the address space available to the 
isolation environment.
 
Bootstrapping
Trust needs to be bootstrapped in the compute nodes to ensure that workloads and 
configurations are run on the correct nodes.  Bootstrapping ensures that the compute is in 
the correct physical and logical location and provided with the ability to authenticate itself.  
These steps are usually part of the cloud provider’s provisioning.  However, methods are 
available to verify trust, relying less on a third party.  

 
Storage
Cloud Native Storage covers a broad set of technologies that are bucketed into presented 
storage and accessed storage.  Presented storage is storage made available to workloads 
such as volumes and includes block stores, filesystems and shared file systems.  Access 
storage is storage that is accessed via an application API, and includes object stores, key value 
stores, and databases.

Storage systems contain a data access interface that defines how applications or 
workloads store or consume data that is persisted by the storage system or service.  
This interface can be protected by access controls, authentication, authorization, and 
potentially encryption in transit.

Storage systems also contain a control plane management interface which is typically an 
API protected by authentication and TLS, although finer grained access may be available.  In 
general the control interface is only accessed via a service account by an orchestrator or 
service broker.  

 
Storage Stack
Any storage solution is composed of multiple layers of functionality that define how data is 
stored, retrieved, protected and interacts with an application, orchestrator and/or operating 
system.   Each of these layers has the potential to influence and impact the security of the 
storage system.   A common example may be a filesystem that persists files or blocks to an 
object store.   It is equally important to protect every layer in the topology, and not just the top 
layer where data is accessed.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
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Orchestration

Most orchestrated systems will implement a variety of abstraction and virtualization 
layers that may include filesystems (such as bind mounts), volume managers, and the 
application of permissions at a user or group level based on orchestrator policies.  As 
with many components of containerization and microservice architectures, protecting 
volumes and storage will always rely on the protections in place from other capabilities.  
If a user is able to escalate their privileges within the orchestrator or container runtime 
to root they can wreak havoc within the environment.  The implementation of zero 
trust, least privilege, and access control and enforcement are linchpins in successfully 
securing storage in cloud native architectures.

 
System Topology & Data Protection

Understanding a system’s storage topology is key in order to secure both the data access 
path to the storage system and the intra-node communication in distributed topologies.  

Common topologies include centralized models where all compute nodes access a central 
storage service, distributed models that distribute the function over a number of nodes, and 
hyperconverged models where application and storage workloads are combined on the same 
nodes.   The selection of specific, layered security mechanisms to protect data in storage and 
in transit between storage locations is driven on the topology in use by the system.  

A key function of any storage system is to provide protection of the data that is being 
persisted in the system or service.  This protection is implemented first through availability of 
the data to authorized users and should exist as a transparent layer in the system. This can 
include technologies such as parity or mirroring, erasure coding or replicas.  Protection is 
next implemented for integrity, in which storage systems will add hashing and checksums to 
blocks, objects or files primarily designed to detect and recover from corrupted data, but can 
also add a layer of protection against the tampering of data.

 
Caching

Caching layers, often fully fledged separate systems, are implemented to improve the 
performance of storage systems, especially filesystems, objects and databases.  The 
appropriate access controls and security policies need to be applied to the caching layer as 
the cache will be fronting the access to the actual storage back-end.

https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=kix.kyffcmw3zhk
https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=kix.kyffcmw3zhk
https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=id.bl312cp5xyv1
https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=kix.3f703zlu80we
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Data Services

Storage systems often implement a number of data services which complement the core 
storage function by providing additional functionality that may be implemented at different 
layers of the stack and may include replication and snapshots (point-in-time copies of 
data).  These services are often used to move copies of data to remote locations, and it is 
important to ensure that the same access controls and security policies are applied to the 
data at the remote location.

Physical or Non-Volatile Layer

Cloud native storage security is not restricted to virtual cloud native architectures as cloud 
native capabilities can be deployed on-prem, and even virtual offerings have a physical 
presence.  It is important to remember that storage systems will ultimately persist data on some 
form of physical storage layer which is generally non-volatile.  Modern physical storage such as 
SSDs often support security functions such as self encryption, as per the OPAL standards, and 
rapid/secure erasure functions.   Secure erasure is important when devices that contain data 
need to leave a secure physical location (e.g. to be returned to a vendor after developing a fault).

 
Storage Encryption

Storage systems can provide methods to ensure confidentiality of data through data 
encryption.   Data encryption can be implemented for data in transit or data at rest, and when 
leveraged at the storage system can ensure that the encryption function is implemented 
independently to the application.  

Encryption can have an impact on performance as it implies a compute overhead, but 
acceleration options are available on many systems which can reduce the overhead.  When 
selecting the kind of encryption for data, consider the data path, size, and frequency of access 
as well any regulations or additional security protections that may require more secure 
algorithms to be used.  Additionally, teams should not neglect to consider the use of caches 
when considering encryption requirements for their architectures.

Encryption services can be implemented for data in transit (protecting data in the network) 
and for data at rest (protecting data on disk).  The encryption may be implemented in the 
storage client or storage server and granularity of the encryption will vary by system (e.g. 
per volume, per group or global keys).   In many systems, data in transit is protected with TLS 
(which has the added benefit of providing an authentication layer via certificates7.   Older 
protocols (such as iscsi) may be harder to secure in transit (although more complex solutions 
such as IPsec or encrypted VPNs8 can be used).   Data at rest is generally protected using 

7 It is critical to note that while authentication is available for use, mutual authentication is the preferred mechanism to not only verify 
the client but also the server (outsider versus insider).
8 Utilization of a VPN does not guarantee encryption.

https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
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standard symmetric encryption algorithms such as AES, and may be deployed with specific 
modes of encryption such as XTS for block devices.

The encryption function will often depend on integration with a key management system.

 
Persistent Volume Protection
Protecting access to volumes is critical to ensure only authorized containers and workloads 
may leverage volumes provided.  It is imperative to define trust boundaries for namespaces 
to cordon access to volumes.  Leverage existing or create new security policies that prevent 
groups of containers from accessing volume mounts on worker nodes and ensure only 
appropriate worker nodes have access to volumes.  It is especially critical as privileged 
containers can gain access to a mounted volume in a different namespace, so additional 
precautions are needed. 

Specifying the UID or GID of the volume still permits access by container in the same 
namespace and will not provide data protection.  Network file system version 3 (NFSv3) 
assumes the client has already performed authentication and authorization and does not 
perform validation.  It is critical to consider where authentication and authorization occur and 
whether validation of that action exists when implementing protections.

 
Artifact Registries
Registries should accommodate technologies to sign and verify OCI artifacts.  It is also 
important to ensure that the caching and distribution tools also provide the capability to sign, 
encrypt and provide checksums to ensure that the caching layer can detect tampering or 
attempts to poison the dataset.

The CNCF Storage Whitepaper provides additional background on the concepts, terminology, 
usage patterns and technology classes of cloud native storage.

 
Access
 
Identity and Access Management
A comprehensive identity and access management (IAM) solution for cloud native 
architectures requires service identity at a minimum.  Organizations maintaining or operating 
on-premise or hybrid clouds need user and device identity management.  For applications 
and workloads distributed across multi-cloud environments, identity federation is critical to a 
successful implementation.

Applications and workloads should be explicitly authorized to communicate with each 
other using mutual authentication.  Due to the ephemeral nature of cloud computing, key 

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.ruzpb2ykwf3
https://bit.ly/cncf-storage-whitepaperV2
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rotation and lifespan need to be frequent and short to maintain the demands of high-velocity 
capabilities and control and limit the blast radius of credential compromise.

The utilization of identity management services from cloud providers is dependent on 
industry-specific use cases.  Users, independent from the cloud-provider, should 
generate and manage credentials and keys for sensitive workloads such as health or 
finance information.

For the client and server to bi-directionally verify identity via cryptography, all workloads must 
leverage mutual/two-way transport authentication.

Authentication and authorization must be determined independently (decision point) and 
enforced (enforcement point) within and across the environment.  Ideally, secure operation 
for all workloads should be confirmed in real-time, verifying updated access control and 
file permissions where possible as caching may permit unauthorized access (if access was 
revoked and never validated).  Authorization for workloads are granted based on attributes 
and roles/permissions for which they have been assigned.  It is strongly recommended 
organizations use both Attribute-Based Access Control (ABAC) and Role-Based Access 
Control (RBAC) to provide granular authorization enforcement in all environments and 
throughout their workload lifecycle. Such posture can enable defense-in-depth, where 
all workloads are able to accept, to consume, and to forward the identity of the end user 
for contextual or dynamic authorization. This can be achieved through the use of identity 
documents and tokens. Not enforcing this limits  an organization’s ability to truly perform  
least privilege access control on system-to-system  and service-to-service calls.

It is critical to note, application or service identity is also essential in the context of 
microservices, where the identities for apps are primarily subject to be spoofed and 
impersonated by a malicious service.  Utilization of a strong identity framework and service 
mesh can help overcome these issues.

All human and non-human cluster and workload operators  must be authenticated and all 
their actions must be evaluated against access control policies that will evaluate the context, 
purpose, and output of each request. In order to simplify the authentication process, identity 
federation can be configured to allow usage of enterprise capabilities such as multi-factor 
authentication. Authorization must then be enforced with access control mechanisms 
mentioned in this section.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=id.bl312cp5xyv1
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Credential Management

Hardware Security Modules (HSM)
Whenever possible, the reader should use technologies such as HSMs to physically protect 
cryptographic secrets with an Encryption Key that does not leave the HSM.  If this is not 
possible, software-based credential managers should be used.

Credential Management Cycle
Cryptographic secrets should be generated securely within either an HSM or a software-
based secrets management system.  

Secrets, whenever possible, should have a short expiration period or time to live after which 
they become useless.  Secret management should be highly available and have high ease 
of generation as these characteristics are prerequisites for the short-lived secrets.  While 
not recommended, if organizations are using long-lived secrets, appropriate processes and 
guidance should be established for periodic rotation or revocation, especially in case of 
accidental disclosure of a secret.  All secrets must be distributed in transit through secure 
communication channels and should be protected commensurate with the level of access or 
data they are protecting.

In any case, secrets should be injected at runtime within the workloads through non 
persistent mechanisms that are immune to leaks via logs, audit, or system dumps (i.e. in-
memory shared volumes instead of environment variables).

 
Availability
 
Denial of Service (DoS) & Distributed Denial of Service (DDoS)
A denial-of-service attack (DoS attack) in the context of cloud native applications is a class of 
cyber-attacks.  The perpetrator seeks to temporarily or indefinitely make the cloud native application 
unavailable to its intended users (human or automated).  The perpetrator may do this via disrupting 
critical cloud native application components (such as microservices), disrupting the orchestration 
layer responsible for keeping the microservices running, or disrupting health monitoring systems 
responsible for scaling the application.  A denial of service is typically accomplished by flooding 
critical microservices or resources with superfluous requests to overload systems and prevent 
some or all legitimate requests from being fulfilled.

A distributed denial-of-service attack (DDoS attack) typically involves a high volume of incoming 
traffic flooding the cloud native application services or the upstream networks to which they 
depend.  Typically the attack is mounted from many different sources.  Volumetric attacks are 
mitigated by detecting and deflecting the attacks before they reach the cloud native application.
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Security Assurance
Security is fundamentally a risk management process that seeks to identify and address 
risks posed to a system.  The iterative and perpetual hardening of systems will mitigate, 
reduce, or transfer risk depending on component’s or organization risk profiles and 
tolerances.  The predisposing concepts of hardening, while legacy at their core, can still be 
applied to a security forward team by evaluating components and their make up against 
minimal, yet flexible, functionality.  For instance, as teams determine an updated base image, 
considerations for additional ports, permissions, and packages added with an update should 
be reviewed and either accepted, altered, or restricted.

In contrast, compliance standards form principles of controls to ascertain or create 
requirements definitions by which systems are assessed against.  The outcomes of the 
assessment are binary (pass or fail) but may contain Type 1 (false positive) or Type 2 (false 
negative) errors and should be evaluated as the result of tests from a CI/CD pipeline, 
akin to the results of any testing in a pipeline.  Thus, compliance and security assurance 
are complementary processes but are not interchangeable.  A compliant system is not 
guaranteed to be secure, nor a secure system guaranteed to be compliant.

Threat Modeling
For organizations adopting cloud native, the primary mechanism of identifying risk and 
resulting controls and mitigations is to perform threat modeling of applications, data flows, 
and supporting processes and infrastructure.  The method by which this is accomplished is 
minimally different from typical threat modeling.  The below guidance is an enhancement of 
the four step OWASP threat modeling recommended for cloud native capabilities.

 
End-to-end architecture
A clear understanding of the organization’s or individual’s cloud native architecture 
should result in data impact guidance and classifications.  This helps teams organize data 
distribution within the architecture as well as the additional protection mechanisms for it later 
on.  cloud native diagrams and documentation should not only include the core components 
of the overall system design but should also take into consideration the location of the source 
code, the buckets and other storage mechanisms in use, and any additional aspects of the 
software development cycle.  These are all areas that must be considered when initiating 
threat modeling for cloud native.
 

https://owasp.org/www-community/Threat_Modeling
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Threat Identification
When considering threats specific to an organization’s cloud native capabilities, it is 
recommended to leverage a mature, well-used model of threats such as STRIDE or OCTAVE.  
Common threats organizations may wish to consider for their cloud native architectures 
includes, but is not limited to:

•	 Spoofing a cluster admin by stealing the authentication credentials via a social 
engineering attack 

•	 Tampering of an API server config file or certificate could result in failed API server 
restart or mutual TLS authentication failures

•	 Repudiation of actions of an attacker because of disabled or misconfigured API auditing 
could result in a lack of evidence of a potential attack

•	 Information disclosure is possible if an attacker compromises a running workload and is 
able to exfiltrate data to an external entity

•	 Denial of Service (DoS) resulting from a pod that does not have resource limits applied 
therefore consumes the entire node level CPU and memory, worker node is then lost

•	 Elevation of privilege could happen if a pod is running with unrestricted or higher 
privileged pod security policy or by modifying the security context of a pod or a container

Threat actors to consider for cloud native security are consistent with existing 
threat modeling:

•	 Malicious insider
•	 Uninformed insider
•	 Malicious outsider
•	 Uninformed outsider

Organizations are recommended to leverage the existing resources available in the cloud 
native landscape for additional information on threats to cloud native architecture.

The utilization of pipelines and infrastructure as code (IaC) may provide compensating or 
mitigating controls for some threats or reduce likelihood of their success or occurrence.  
As with any cloud native process, it is important to iterate and provide feedback.  In 
the context of threat modeling, this means re-evaluating if the existing measures, 
mechanisms, and matrices accurately reflect the operational state given the continual 
changes to the architecture.
 

Threat Intelligence
Cloud native applications by design and purpose are a collection of multiple dynamic 
components compromised from first-party and third-party code and tools, which means 
threat intelligence must be applied for network activity and cloud native application 
components.  Cyber threat intelligence is information about threats and threat actors that 
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helps mitigate harmful events.  Threat intelligence in cloud native systems would make use of 
indicators observed on a network or host such as IP addresses, domain names, URLs, and file 
hashes which can be used to assist in the identification of threats.  Behavioral indicators, such 
as threat actor tactics, techniques, and procedures can also be used to identify threat actor 
activity in cloud native components. The MITRE ATT&CK framework for Cloud includes cloud 
native tactics and techniques that can be leveraged as a starting point for establishing and 
validating observability. 

 
Incident Response
For an organization with existing incident response and triaging workflow, special attention 
should be paid to how that can be applied to cloud native workloads which may not always 
conform with some underlying assumptions about node isolation (new pod instances could 
run on a different server), networking (e.g. IP addresses are assigned dynamically) and 
immutability (e.g.  runtime changes to container are not persisted across restarts).  Hence, it’s 
important to revisit these assumptions and reapply or update the incident response playbook 
as needed.  Observability and forensic tools need to understand cloud native specific 
constructs such as pods and containers so that the state of a compromised system can be 
maintained or recreated.  Evidence mishandling can sometimes be unintentional in intent-
based orchestrators, which are built to treat workloads as “cattle, not pets”.  As a side note, 
building an incident response and triaging strategy from the ground up, although possible, is 
out of scope for this document.

Security Stack
 
 Environment
 

Pre (Workload) Flight Security Tools
Pre-workload security tools should maximize hardening and ensure adherence to security 
best practices while minimizing privileges with respect to the hosting environment, network, 
and the orchestration layer.  Tools should also ensure compliance will not break at runtime.

 
Compute & Node Checks
Organizations should leverage tooling that assert hardening and security of compute before 
resources are marked as ready to accept workloads.  Host Vulnerability Scanners and CIS 
benchmark scanners are recommended for this.
 

https://attack.mitre.org/matrices/enterprise/cloud/
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Run Contexts
Security tools that cover the surface area of pre-workload security hygiene checks are 
best suited to run as part of CI pipelines to scan files, artifacts such as container images, 
and IaC.  Security tools that run in CD pipelines are more suitable to run in the context of a 
specific environment and take into consideration the specific configuration for the specified 
environment.  Cloud native orchestrators that support the concept of admission time checks, 
permit organizations to leverage admission delivery hooks to apply tools that complement 
earlier stages of the pipeline.
 
In-Flight Security Tools

Workload & Host Runtime Security

Runtime security tools can be broken into four key protection surface areas:
•	 process, container, or system level security
•	 network security
•	 data security
•	 application security

For each protection surface area applicable to an organization’s area of concern, a 
combination of tools should be used.  Policy driven tools implement rule based policies, 
whether authored manually or through a recommendation system.  Once applied, these  
policy driven tools provide predictable results and can be applied in monitor-only or 
enforcement-mode.  

Threats and vulnerability feeds enable security tools to intercept anomalous behavior 
and security events from unknown and identified threats.  These feeds are normally 
updated on a regular and frequent basis.  The use of feeds provide a defense layer to 
complement policy driven tools and can be implemented into tools that cover most 
protection surface areas.  Teams should look to network threat intelligence of known 
command & control (C&C) servers, cryptomining domains, malware file checksums, etc.  
within feeds to assist in updating policy tools.

While the existing tools can provide mechanisms to manage noise produced from false 
positive and false negative issues and deal with known threats as well as regulating 
operations with policy driven guardrails, machine learning (ML) based security tools provide 
a detection layer of known and unknown threats beyond the boundaries predictable tools 
can establish.  For example, behavior based analysis of identity authorization logs to detect 
insider threats and breaches or  adaptive analysis of orchestrator audit logs to detect exploit 
attempts or service account theft.  ML driven analysis of host syscall patterns can be used to 
detect container escape attempts or host exploit attempts.

Orchestration security tools that monitor and track security of the various cloud native 
orchestration are normally offered as domain specific commercial offerings with a wide range 
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of capabilities spanning granular policy controls, compliance checks, AI/ML based anomaly 
detection and decent integrations surface.

As with any cloud native workload, the tools used to monitor, report, or control the 
security of the environment should be cloud native as well for ease of use, management, 
and deployment.  

Zero Trust Architecture
Zero trust architectures mitigate the threats of lateral movement within a network through 
fine grained segmentation, micro-perimeters, and removing implicit trust to data, assets, 
applications, and services (DAAS) with verification and enforcement policies.  Most common 
implementations of zero-trust architecture rely on cryptographic concepts to create zero 
trust.  This is primarily based on the ability to have specific key material secured in hardware 
or tokens and managed in a way where they can be securely communicated to a platform.

The foundational building block that zero trust architecture usually consists of  
several aspects:

•	 Each entity can create proof of who the identity is
•	 Entities are able to independently authenticate other identities (i.e.  Public Key 

Infrastructure)
•	 Communications between entities remain confidential and untampered 

The zero trust framework creates the zero trust building blocks by leveraging a strong root 
of trust: the ability to tie a tamper-resistant trust to an entity or process is the foundational 
building block.  It then requires attestations: the ability to attest, validate, and prove the 
identity of an entity.   For the example of container services, how do I check that this container 
is who it claims to be.  This needs to be verified with the orchestrator, but to trust the 
orchestrator, we need to ensure it is running untampered, which can only be ensured if we are 
running a trusted OS, BIOS, etc.  Attestations are usually a chain as well.

Zero trust also requires secure communication between entities.  While network 
segmentation provides value to zero trust architectures and should be considered, is not an 
end all solution to zero trust implementation.  Orchestrator network policies as well as use of a 
service mesh are all components of a comprehensive zero trust solution.  More information on 
zero trust concepts is available widely online.

 
Least Privilege
Least privilege is just as important, or perhaps the most important aspect of cloud native 
architectures, and must be considered at all parts of the stack where an authentication 
or authorization decision is made.  Traditionally Least Privilege has been thought of at the 
account layer whether that account is a human or a service.  
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In cloud native, least privilege must be applied at every layer of the stack.  It should also 
be considered when evaluating the specific tooling responsible for fulfilling each layer’s 
execution.  Organizations may find, as they explore various products and capabilities, that 
many containers  have privileged-by-default deployments or required root privileges to 
operate.  As a result, additional measures may need to be taken to isolate those elevated 
privileges from the rest of the workload.  Organizations should consider all areas to employ 
isolation and least privilege in their workloads and deployments; from cgroups and system 
calls in the runtime environment to artifact management and rootless builds.

To consistently reduce the potential attack surface and corresponding blast radius, 
organizations need to implement the principle of least privilege at every level of their 
architecture.  This not only applies to the individuals performing various functions within 
their roles but also to the services and workloads executing in a given environment.  Rootless 
services and containers are vital to ensuring that if an attacker does get into an organization’s 
environment, they cannot easily traverse between the container they gain access to and the 
underlying host or containers on other hosts.  

Mandatory Access Control (MAC) implementations (e.g. SELinux and AppArmor) can limit the 
privileges beyond those set to the container or namespace and provide additional container 
isolation at the host level to prevent container breakout or pivoting from one container to 
another to escalate privileges beyond those permitted by the access control in place.  

 
Roles and Responsibilities
When moving to cloud native architectures and deployments, organizations should expect 
to see adjustments in legacy security roles and responsibilities and create new security 
roles specific to the cloud.  With the rapid onset of modern development methodologies 
and better alignment of IT activities with business needs, security must be adaptive, 
commensurately applied with actual risk, and transparent.  It is unreasonable to expect 
developers and operations to become security experts.  Security practitioners need to partner 
with developers, operations, and other project life elements to make security and compliance 
enforcement fully integrated with process modernization efforts and development lifecycles.  
Doing so means findings are reported in real-time through the tools in use by developers for 
habitual resolution, akin to how build failures are resolved at notice.

The blurred lines that often occur in DevOps environments should not replace clear separation 
of duties (SoD) when it comes to managing security in cloud native environments. While 
developers will be a lot more involved in implementing and executing security measures, they 
do not set policy, need not gain visibility into areas that aren’t required for their role, etc. - this 
separation should be implemented between roles and across product and application teams 
in accordance with the organization’s risk tolerance and business practices.  It is understood 
this becomes difficult with smaller organizations when individuals perform many duties 
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to keep the business thriving.  Nevertheless, implementing a distinct role to permission 
alignment can assist in enforcing SoD as the organization continues to grow and cognitively 
forces a mental switch in the activities being performed by the individual.  Ultimately, allowing 
for reorganization roles to be reassigned to new individuals without increasing scope of 
access with the new assignment.

Organizations will need to reevaluate their asset risks as products and services migrate 
to the cloud.  With ownership and management changes of the technology in use and its 
deployment stack, executives should expect significant risk posture changes.  Shared 
responsibility between providers and teams will require changes to thresholds in risk 
acceptance, transference, and new mechanisms for mitigation.

 
Compliance
Designing a system with the appropriate set of security controls that address regulatory 
and compliance guidance makes cloud native resources more secure.  Doing so may also 
make certification by relevant regulatory bodies and auditors easier, particularly if the system 
design and planning is done to allow automated compliance to various regulatory bodies 
through a plugin model.  While compliance often requires utilization of security benchmarks 
for increased security and configuration management enforcement, such as the Center for 
Internet Security (CIS) benchmarks, it is important to note that utilization of machine readable 
compliance control frameworks  and languages are recommended.  

 
Regulatory Audits
Many financial, health, government, and other entities need to comply with a specific set of 
requirements to protect the system.  The users trust the systems to keep their interactions 
private and secure.  Every organization should evaluate which regulatory standards apply to 
them (e.g., PCI-DSS, HIPAA, FedRAMP, GDPR, etc.).  They should then determine how specific 
requirements apply to their cloud native systems and how they will implement those 
standards’ real-world implementation.  This evidence-gathering mechanism supporting 
adherence to specific standards should be automated with non-repudiation guarantees 
whenever possible.
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Personas and Use Cases
The focus is on security, protection, detection, and auto-response where ever possible.  It is 
not necessarily development tooling alone, but security tooling that integrates transparently 
into the development process to enforce security policies where fast feedback and most 
immediate actions to remediate can occur.  For specific information on cloud native security 
use cases refer to the SIG-Security’s use cases listing.

 
Industries
 
Enterprise
Core areas of concern for Enterprise to adopt a cloud native model are maintaining the current 
process and procedures while meeting the business objective.  Keeping the interoperability, 
data loss or leakage, and security risk exposure at a minimum when new standards and 
practices are introduced throughout the organization. 
 

Microbusiness
Core areas of concern for Small businesses to adopt a cloud native model are the ability to 
focus on short term goals and foster innovation to meet intense competition.  The lack of 
resources, budget, technology depth, and best practice hinders their ability to adapt to cloud 
native solutions.  Small business requires repeatable patterns and a small IT footprint to solve 
the challenges.
 
Finance
Core areas of concern for financial industries that are essential to successful cloud native 
adoption are unauthorized disclosure of information, fraud, and fund availability.  Fraud can 
have a direct impact on fund availability, making the integrity of financial transactions of 
paramount importance.  
 
Healthcare
Core areas of concern for healthcare industries that are essential to successful cloud native 
adoption are unauthorized disclosure of information, timeliness, and availability of records, 
and accuracy of records.  Due to the nature and practices of the healthcare industry, the 
availability of records and their associated content is the basis by which medical decisions are 
made.  In the absence of such information, new records are developed.

https://github.com/cncf/sig-security/blob/master/usecases.md
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Academia and Education
Core areas of concern for educational institutions for successful cloud native adoption 
can be dependent upon the intended end user.  Institutions catering to minors may 
have additional legal requirements to protect the confidentiality of minors, and thereby 
making access control critical.  Beyond this, institutions should focus on the availability 
of educational content to end users.

 
Public Sector
Core areas of concern for Public Sector organizations that are essential to successful 
cloud native are security, data sovereignty, compliances, and vendor lock-in.  The barriers 
emerge from agencies placing regulations to protect the public interest.  In the public 
sector, it is essential to maintain harmony and trust between public and government entities.  
Additionally, timeliness of deployments and features may also be a strong consideration.  The 
adoption of cloud native, along with modern methodologies, can increase organizational 
velocity, which is critical to many areas of the public sector.

 
Evolution of Cloud Native Security 
Container technologies are a continuously evolving space with rampant adoption.  The 
threat landscape for cloud native technologies and the corresponding security challenges 
in mitigating and resolving these threats evolves as well.  These, in addition to a complex 
ecosystem for secure container platforms, require a fully formulated, well thought-out 
security strategy, with technical controls and automation  for security policy enforcement, 
response, and operational discipline.

Containers provide enormous security benefits when appropriately implemented.  They 
provide greater transparency, modularity, reduced attack surface, easier application 
components updates, and a consistent environment for application components to run.  
This consistency allows for parallel security to thrive in development, test, and production 
runtime environments.  They also reduce the impact of enterprise wide security incidents 
when enabling proper isolation built between applications (essentially enabling micro 
segmentation in enterprises which may have a flat network) as part of a layered defense-in-
depth security strategy.

With all the current challenges in security, the number of security tools needed, and the 
shortage of skills and talent in the market, securing a container platform is a monumental 
challenge.  We expect to see increased migration to the cloud as container service offerings 
by cloud providers become more mature with more cloud native security & intelligence 
tooling integrated over intercompatible specifications.  These offerings reduce the overhead 
for enterprises as part of the shared responsibility model.  
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Thus container adoption, and thereby cloud native adoption,  will continue to fuel the digital 
transformation for enterprises.  Enterprises are already leveraging serverless architectures 
and designs for some services, but building a whole business function using serverless still is 
evolving, considering the challenges with reduced visibility when functions are orchestrated 
to build a business function and an existing nebulous plethora of yet to be known security 
challenges.  In short, serverless adoption in cloud native architectures is expected to increase 
over time as service provider security controls decrease overhead for consumers in a fashion 
similar to the existing container ecosystem.

The threat landscape, however, generally remains the same, with top weaknesses consistently 
being exploited by the same sets of actors.  The most significant changes we see are 
the manner and mechanisms by which attackers target cloud native organizations and 
applications. Any attacks on container orchestrators and deployments are increasing, as seen 
with the increase in cryptomining attacks through infiltrated or trojan horse images.  As with 
any innovative technology beginning to reach market saturation, it was only a matter of time 
for malicious actors to exploit any low hanging fruit.

As these attacks become more prevalent, more intricate, and expand, cloud native security 
has to evolve to put a more significant focus for enterprises and DevOps teams than where 
it currently resides.  We are seeing an increase in the use of security policies as code but 
there is a lot of room for evolution and increased automation in security policy enforcement, 
detection and response.  It’s evident that immediate and automated security intelligence and 
responses will be essential to thwart the attacks, and even self-heal from them.  Perhaps even 
adapt and integrate regression proofing9 as they occur.

Container forensics tools and technologies will need to evolve to keep pace with where 
cloud native is headed.  This is particularly critical as the number and complexity of incidents 
increase in the context of infrastructure-as-a-service and other as-a-service models. 

9 The concept of regression proofing is best explained as a facet of antifragile behaviors within technology environments.  
Instead of remaining resilient and robust against adverse conditions and attacks, technology can proactively adapt and thrive 
when subjected to them.
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Conclusion
In the past fifteen years, the community has seen rapid adoption in cloud services and 
technology, with a recent significant push towards cloud native models.  As with any new 
commodity in the security industry, innovators are poking and pushing technology forward 
for early adoption and testing.   

It is critical that organizations at the brink of the technology chasm, or in the early majority, 
earnestly analyze and apply core security concepts to alleviate the lag in hardening and 
environmental control.  

While security-specific guidance and controls may not yet exist for most innovations we see 
today and coming in the future, core security concepts in cloud native architectures can be 
consistently applied while designing, developing, and deploying new capabilities.

These core security concepts are:

•	 Protection from unauthorized access (person and non-person entities) - 

Ephemerality reduces asset exposure to unauthorized entities by consistently 
rebasing from a known good state.

•	 Immutability to preserve the integrity of content and code.
•	 Availability of services, tooling, and content - Distribution provides resilience and 

redundancy.
•	 Auditing and Accountability - Provides a mechanism to ensure that no irregularities 

have occurred and to keep track of authorized changes.
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Acronyms and Glossary
ABAC - Attribute Based Access Control
IAM - Identity and Access Management
RBAC - Role Based Access Control
SOC - Security Operations Center
IaC - Infrastructure as Code
CI - Continuous Integration
CD - Continuous Deployment
HSM - Hardware Security Module
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