
1

Cloud Native
Security Whitepaper

2

Index
Executive Summary			 3

Purpose				 3
Problem Analysis			 3

Lifecycle Phases			 4
Develop			 4
Distribute			 4
Deploy				 4
Runtime			 5

Recommendations			 5
Conclusion			 6

Introduction			 6
Target Audience			 6
Cloud Native Goals			 7
Assumptions			 7

Cloud Native Layers			 8

Lifecycle				 9
Lifecycle Processes			 9

Supply Chain			 9
Security Benchmarks		 10

Develop				 10
Security Checks in Development	 11

Development of Tests		 11
Code Review			 12

Distribute			 12
Build Pipeline			 13
Image Scanning			 13
Image hardening			 14
Container Application Manifest Scanning	 14
Container application manifest hardening	 14
Testing				 14

Static Analysis and Security Testing	 15
Dynamic Analysis		 15
Security Tests			 16

Artifacts & Images			 16
Registry Staging			 16
Signing, Trust, and Integrity		 16
Encryption			 17

Deploy				 17
Pre-Flight Deployment Checks		 18
Observability & Metrics		 18
Response & Investigation		 18

Runtime Environment		 19
Compute			 19

Orchestration			 20
Security Policies		 20
Resource Requests and Limits	 20

Audit Log Analysis		 21
Control Plane Authentication and
Certificate Root of Trust		 21
Secrets Encryption		 22

Containers			 22
Runtime			 22
Microservices and Eliminating
Implicit Trust			 23

Image Trust & Content Protection	 23

Service Mesh			 23
Detection at Runtime		 24
Functions			 24
Bootstrapping			 25

Storage				 25
Storage Stack			 25

Orchestration			 26
System Topology & Data Protection	 26
Caching			 26
Data Services			 27
Physical or Non-Volatile Layer		 27

Storage Encryption			 27
Persistent Volume Protection		 28
Artifact Registries			 28

Access				 28
Identity and Access Management		 28
Credential Management		 30

Hardware Security Modules (HSM)	 30
Credential Management Cycle		 30

Availability			 30
Denial of Service (DoS) & Distributed
Denial of Service (DDoS)		 30

Security Assurance			 31
Threat Modeling			 31

End-to-end architecture		 31
Threat Identification		 32

Threat Intelligence			 33
Incident Response			 33
Security Stack			 33

Environment			 33
Pre (Workload) Flight Security Tools	 33

Compute & Node Checks		 34
Run Contexts			 34

In-Flight Security Tools		 34
Workload & Host Runtime Security	 34

Zero Trust Architecture		 35
Least Privilege			 36
Roles and Responsibilities		 36

Compliance			 37

Regulatory Audits			 37

Personas and Use Cases		 38
Industries			 38

Enterprise			 38
Microbusiness			 38
Finance			 38
Healthcare			 38
Academia and Education		 39
Public Sector			 39

Evolution of Cloud Native Security	 39

Conclusion			 41

Acronyms and Glossary		 41

References			 41

Acknowledgements			 41

3

Executive Summary
Purpose
The technology industry has shifted towards patterns of development and deployment
that are seen as “cloud native”. Simultaneously, the ecosystem of technologies, products,
standards, and solutions is expanding, challenging decision makers to remain abreast of
complex designs. The CISO role in particular, has the evolving responsibility of illuminating
business value propositions in this dynamic arena. Meanwhile, cloud native patterns have
also encouraged changes in consumption models and the adoption of modern workflows
(e.g. agile methodologies and DevOps processes) requiring integrated security practices.

Problem Analysis
Security concerns within this landscape are complex because of the explicit focus on rapid
development and deployment in addition to impracticality of traditional perimeter-based
security. This complexity requires a paradigm shift to protect applications by migrating
from a perimeter based approach to one where security moves closer to dynamic workloads
that are identified based on attributes and metadata (e.g. labels and tags). This approach
identifies and secures workloads to meet the scale needs of cloud native applications while
accommodating constant flux.

These paradigm shifts require the adoption of increased automation in the application
security lifecycle and secure by design architectures (e.g. Zero Trust). The embrace of
containerization as one of the central transformations in the cloud native environment also
requires new best practices. The tradeoffs for a secure implementation continue to involve
multiple stakeholders within an organization, and significantly impacts developer and
operator productivity in pursuit of business objectives. Cloud native applications still require
development, distribution, deployment, and operation but the paradigm dictates new security
mechanisms by which these objectives are efficiently achieved.

Cloud native development can be modeled in distinct phases that constitute the application
lifecycle: “Develop,” “Distribute,” “Deploy,” and “Runtime.” Cloud native security contrasts
with traditional security approaches in that there is a tremendous opportunity to ensure that
security is injected throughout these distinct phases instead of bookending the lifecycle with
separately managed security informed interventions.

It is critical to note that without perpetual education and training on use and integration of
these concepts, tools, and processes, adoption and application will not persist and may revert.

4

Lifecycle Phases

Develop
Cloud native tools are meant to introduce security early in the application lifecycle.
Security testing needs to identify compliance violations and misconfigurations early in
order to create short and actionable feedback cycles for continuous improvement. This
approach enables security failures to follow familiar workflows raised for other issues
in the pipeline (e.g. bug fixes or CI failures), which already require resolution prior to
moving software further in the pipeline.

The modern security lifecycle for this model revolves around the development of code
that adheres to recommended design patterns (e.g. 12-factor) and ensures the integrity
of the workload delivered. Cloud native is conceptually tied to Infrastructure as Code
(IaC) practices and are meant to ensure controls are operating as intended with early
security check integrations . These controls and integrations identify misconfigurations
and implement best practices in IaC and orchestration manifests as early to reduce long
term cost and increase security value.

Distribute
Software supply chain safety is especially critical in models that enable faster software
iteration. Cloud native application lifecycles need to include methods for verifying
not only the integrity of the workload itself but also the process for workload creation
and means of operation. This challenge is amplified by the necessary, practical, and
consistent use of open source software and third party runtime images, including layers
of upstream dependencies.

Artifacts (e.g container images) present in the lifecycle pipeline require continual automated
scanning and updates to ensure safety from vulnerabilities, malware, insecure coding
practices, and other malfeasance. Upon completing these checks, it is important to
cryptographically sign artifacts to ensure integrity and enforce non-repudiation.

Deploy
Security integrated throughout the development and distribution phases allows for the
real-time and continuous validation of candidate workload attributes (e.g. signed artifacts
are verified, container image and runtime security policies are ensured, and host suitability
can be validated). Secure workload observability capabilities, deployed alongside the
workload, allow for logs and available metrics to be monitored with a high level of trust,
complementing integrated security.

5

Runtime
Cloud native environments are expected to provide policy enforcement and resource
restrictive capabilities by design. Runtime resource constraints (e.g. Linux kernel cgroup
isolation) for workloads are an example of restrictive and observability primitives integrated
into higher levels of the application lifecycle in a cloud native environment. The cloud native
runtime environment can itself be broken down into layers of interrelated components with
distinct security concerns1 (e.g. hardware, host, container image runtime, orchestration).

Within the cloud native runtime environment, the microservice architecture for applications
has been adopted by industries and organizations worldwide. Applications are often
composed of several independent and single purpose microservices which communicate
with each other via service layer abstractions which the container orchestration layer makes
possible. Best practices to secure this interrelated component architecture involves ensuring
that only sanctioned processes operate within a container namespace, prevention and
notification of unauthorized resource access, and network traffic monitoring to detect hostile
tooling activity. Service Mesh is another common abstraction that provides consolidated
and complementary functionality for orchestrated services without imposing changes on the
workload software itself (e.g. logging of API traffic, transport encryption, observability tagging,
authentication, and authorization).

Recommendations
Cloud native security seeks to ensure the same conditions of diligence, integrity, trust,
and threat prevention as traditional security models while integrating modern concepts of
ephemerality, distribution, and immutability. In these rapidly changing environments, prone
to fail-forward for iteration, automation inline with the development pipeline is required
for secure outcomes. Organizations must earnestly analyze and apply these core security
concepts to alleviate delay in applying hardening and environmental controls, and need to
hold engaged third parties to the same standard while balancing perpetual education and
training relevant to the cloud capabilities and security proponents for their own workforce.

With additional layers of complexity and a broad mesh of components to care for, protection
from unauthorized access must be accomplished by integrating security throughout the
lifecycle and into the runtime environment. It is highly recommended organizations evaluate
the security defense stack against the relevant attack frameworks2 to achieve clarity about
which threats a defense stack covers. Additionally, organizations need to adopt approaches
and methodologies that shift security left3, amplify DevOps, and reach beyond to the next
technology horizon so continued, proper checks of all components before, within, and after
the pipeline are verified with any innovation brought into the lifecycle.

1 Another model to consider is Cloud, Clusters, Containers, and Code: https://kubernetes.io/docs/concepts/security/overview/
2 Shifting security left often leaves organizations to lapse operational security monitoring. It is important that security exists in all parts of the
lifecycle and organizations continually evaluate other aspects of their business and technology processes where they may reach beyond modern
security paradigms to embrace security as a culture and habit.
3 Example - MITRE ATT&CK Framework for Kubernetes

https://kubernetes.io/docs/concepts/security/overview/

https://www.devsecops.org/blog/2016/5/20/-security
https://www.darkreading.com/threat-intelligence/microsofts-kubernetes-threat-matrix-heres-whats-missing/a/d-id/1339106

6

Conclusion
Cloud native security, when executed strategically across an organization, can provide
high availability, assurance, resilience, and redundancy at scale ensuring customers and
developers have secure access to required resources at the velocity they expect. Security
itself remains an interdisciplinary field that cannot be isolated from the development lifecycle
or treated as a purely technical domain. Developers, operators, and security personnel must
all partner, exchange, and collaborate to continue to move the field and industry forward. As
with any technical innovation, it is the people, their passion, and the journey that genuinely
make the community and cloud native security possible.

7

Introduction
This paper intends to provide organizations and their technical leadership with a clear
understanding of cloud native security, its incorporation in their lifecycle processes, and
considerations for determining the most appropriate application thereof. Cloud
native security is a multi-objective and multi-constrained problem space spanning
many areas of expertise and practice. Nearly all Day 1 and Day 2 operations overlap
with the security domain, ranging from identity management to storage solutions.
However, cloud native security covers much more than these areas; it is also a
human problem space, incorporating individuals, teams, and organizations. It is the
mechanisms, processes, and intent by which humans and systems interact with and
make changes to cloud native applications and technology.

Target Audience
Our target audience is the Chief Security Officer (CSO), Chief Information Security Officer
(CISO), or Chief Technology Officer (CTO) of a private enterprise, government agency,
or non-profit organization who wishes to deliver a secure cloud native technology
ecosystem. Additional organizational stakeholders may include Project, Product,
Program managers, and Architects responsible for designing and implementing
secure, cloud native products and services. Apart from this, anyone with a keen
interest in cloud native security can refer to this document.

8

Cloud Native Goals
The adoption and innovation involving containers and microservices architectures have
brought with it its fair share of challenges. The need to mitigate cybersecurity vulnerabilities
has systematically climbed the priority ladder in modern organizations. As innovation
around cloud adoption accelerates, the threat landscape also increases. Security leaders
are tasked with protecting assets, both human4 and non-human, by adopting practices to
prevent, detect, and respond to cyber threats while meeting strict compliance requirements.
A common historical narrative has been that security implementations impede the speed and
agility of DevOps teams. Therefore, security leadership must implement tighter integration and
bidirectional understanding to empower DevOps teams to create shared cyber risk ownership.

Secure cloud native adoption patterns and architectures that the organizations need to
adopt must be shared to ensure that the industry is enforcing security practices with high
priority and integrating it throughout the modern application development lifecycle. Most
importantly, highlighting the synergies of security architecture with the security leaders and
aligning organization’s objectives towards security in terms of Vulnerability Management,
Zero Trust, Cloud Security, and DevSecOps should be a top priority.

The concepts described throughout this paper are not designed to favor one service or
component product over another and can be applied regardless of service selection.

This document does not intend to provide general education on security concepts or cloud
computing concepts. It also does not recommend specific technologies or tools; however, it
may cite examples of technology or tools that address the topic discussed.

Beyond the recommendations in this document, specific data security handling practices
related to data protection and privacy regulatory mandates, e.g. GDPR, PCI DSS, may
need additional regulatory-specific consideration. We recommend readers consult
appropriate independent resources for guidance on any such technical controls and
compliance risk matters.

Assumptions
The CNCF defines cloud native within the CNCF Technical Oversight Committee’s (TOC) GitHub
repository. This paper does not seek to change this definition or expand upon it.

As cloud native adoption and modern software development methodologies continue to evolve,
the technologies that comprise an effective cloud native stack will continue to shift over time.
Representations of this shifting stack are included in the all encompassing cloud native landscape.

The term ‘workloads’ within this document covers any products, projects, applications, and
systems that have or will be developed, maintained, distributed, or deployed to a cloud-based
runtime environment.

3 Human capital is a vital asset necessary to the success of any organization, the corresponding intellectual property and relational
capital brought as a result is equally in need of protection.

https://www.cncf.io/
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://landscape.cncf.io/

9

Cloud Native Layers

Figure 1

The cloud native stack is composed of the layers of the foundation, lifecycle, and environment.
The cloud native stack can be adopted using different deployment models: IaaS, PaaS,
CaaS, and FaaS. Each deployment model provides additional abstractions that ease the
management and operation of cloud native environments. As some of these models are
considered well known and in use for years, we will focus on models specific to cloud native.

The Containers-as-a-Service (CaaS) model allows users to orchestrate and otherwise manage
containers, applications and clusters by leveraging a container-based virtualization platform,
an application programming interface (API), or a web portal management interface. CaaS
helps users construct scalable containerized applications with security policy embedded
as code and run them on private cloud, on-premises data centers or public cloud. CaaS
helps streamline the process of building a container. With microservice orchestration and
deployments, it helps enterprises release software faster and allows portability between
hybrid and multi-cloud environments, thus reducing infrastructure as well as operating
costs. The CaaS model is cost saving as it helps enterprises simplify container management
while giving them a choice to only pay for the CaaS resources they want and use. CaaS has
containers as its fundamental resource, while for IaaS environments, virtual machines (VMs)
and bare metal hardware host systems are used.

10

The Functions-as-a-Service (FaaS) is another cloud native deployment model, a type of
cloud service that allows enterprise users to execute code in response to events without
the complex infrastructure typically associated with building and launching micro-services.
Hosting a software application in the cloud usually requires provisioning and managing
a virtual environment, managing the operating system and web components, etc. With
FaaS, the physical hardware, virtual machine operating system, and web server software
management are all handled automatically by the cloud service provider. Thus allowing users
to focus on individual functions in the microservices code while paying for resources that are
used and taking advantage of the elasticity of resources that the cloud provides.

Lifecycle
Lifecycle in a cloud native context is the technology, practices, and processes that enable
resilient, manageable, and observable workloads to run within the context of a cloud
environment. As depicted in Figure 1, lifecycle is composed of four continuous phases;
Develop, Distribute, Deploy, and Runtime. Each phase extends and amplifies the previous
while permitting and supporting secure workload execution.

Lifecycle Processes
Management of the supply chain and the curation of applicable security benchmarks are
critical to a secure implementation.

Supply Chain
Organizations are responsible for ensuring that the supply chain for workloads they are
developing are subjected to actionable security analysis within the lifecycle process. Supply
Chain security can be broken into two parts: the security of the tools and services that provide
an environment to create a workload (e.g. developer tooling) and the components that make
up the workload itself (e.g. libraries, dependencies, and images). The supply chain needs to
be implemented in such a way that the integrity of the supply chain itself is verifiable, and
artifacts produced by the software supply chain can therefore be signed for verification of
provenance. As such, an organization must exercise caution when using dependencies
as upstream dependent packages will inevitably contain security vulnerabilities. Verifying
the authenticity and integrity of third-party packages used is essential to ensure that the
dependencies are as intended and not compromised.

A primary characteristic of cloud native applications is the reuse of software that is available
as open source packages and container images that are built and distributed through open
source container registries. Consequently, it is critical for developer, operator, and security
personnel to ensure that artifacts and dependencies in their applications do not contain
known sources of malware and vulnerabilities. The presence of malware in container images

https://research.swtch.com/deps

11

is a significant attack vector in the runtime environment4. It is essential to employ on-demand
and periodic vulnerability scanning of container images and composite packages in the
CI pipeline as well as in the container registries.

Leveraging these methods permits verifiable, secure software distribution and ongoing
operation. Incorporating vulnerability scanning in the workload generation pipeline
allows an organization to amplify feedback for development teams and has the further
potential to block insecure or vulnerable updates from being distributed and deployed.
Periodically scanning software will also allow for escalation of newly identified
vulnerabilities in existing software.

Security Benchmarks
Utilization of security benchmarks (e.g. NIST Application Security Container Guide, Center for
Internet Security (CIS), NIST Security Strategies for microservices, and OpenSCAP) provides
development teams and organizations with a guide to create “secure-by-default”
workloads. Adoption and implementation of these benchmarks enable teams to test for
a hardened baseline. However, they cannot take into account data flows and custom
usage of the platforms under testing. Security practitioners should implement them as a
guide rather than a checklist.

The next few sections provide a detailed analysis of the implications, tools, mechanisms and
best practices to integrate security throughout the application lifecycle.

Develop

 Figure 2

4 https://blog.aquasec.com/malicious-container-image-docker-container-host

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.p5da9dbie2v2
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3nqyr7f883rx
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.cisecurity.org/http://
https://www.cisecurity.org/http://
https://www.open-scap.org/
https://blog.aquasec.com/malicious-container-image-docker-container-host

12

Security for cloud native applications needs to be deployed throughout the entire lifecycle of
an application. The “Develop” phase is the first in this cycle, resulting in the creation of the
artifacts, such as Infrastructure-as-Code, application and container manifests, etc., that will
be used to deploy and configure cloud native applications. Consequently, these artifacts have
proven to be the source for numerous attack vectors that can be exploited in the runtime. The
next few sections elaborate on the various security tools, processes, and checks that need to
be instituted in this phase to dramatically reduce the attack surface of applications deployed
in the runtime.

Security Checks in Development
Security hardening during the development phase forms a critical component in the
deployment of applications. This means that security requirements must be introduced early
in software development and treated in the same manner as any other requirement. These
requirements are typically based on business needs around risk and compliance. Addressing
these needs in the early phases prevents redoing work later in the lifecycle which slows
down the DevOps pipeline, and increases overall costs5. DevOps teams must also leverage
purpose built tools to identify security misconfigurations and vulnerabilities prior to the
deployment of these applications. Equally important is that these tools integrate seamlessly
into existing and familiar tools leveraged by DevOps teams to compliment agility with security
and not impede it. For example, tools need to perform the scanning of Infrastructure as Code
templates as well as application manifests within the developer IDE or when a Pull Request is
made, and provide rich and contextual security information which can be acted upon rapidly,
easily, and early in the development pipeline. Adopting these steps ensure the absence of
known vulnerabilities or high risk configurations. Cloud native components should be API
driven, allowing for complex debugging tools to interact with the deployed primitive workloads
that rely on the orchestrator.

Teams should deploy dedicated development, testing, and production environments to
provide infrastructure and application developers with an isolated environment to develop,
test, and deploy systems and applications, container base images, VM golden images, and
non-functional tests. Some organizations may find leveraging canary deployments, blue-
green or red-black deployments, and other deployment models to be an added efficiency for
fielding dynamic and interactive testing and feasibility.

Development of Tests
Developers, operators, and security personnel should build tests for code and infrastructure
that is business-critical, has a high threat-profile, is subject to frequent change, or has/is
a historical source of bugs. Threat modeling can identify high-risk and high-impact code

5 According to Applied Software Measurement, Capers Jones, 1996 and adjusting for inflation - 85% of defects are introduced
during coding with a cost of $41 to fix compared to a post release fix cost of $26,542.

13

hotspots that provide a high return on investment (ROI) for developing tests. Tests may
include deployment, operating system, infrastructure and database hardening , application
testing (static and dynamic source code testing , container configuration), integration
or system testing (acceptance of application and infrastructure components and their
interaction), and smoke testing (post-deployment checks against a live system). Test authors
should have access to comprehensive development and test environments that enable them
to perform rapid test development while reducing continuous integration (CI) feedback loops.
System test suites should be made available to run locally for authors as well as within a
shared testing environment.

Code Review
Minor changes to a workload, or the infrastructure where the workload has been deployed,
may have far-reaching security consequences. To mitigate the risk of unintended
consequences, teams are encouraged to use the “four eyes” principle when conducting code
review before prior changes are merged into the codebase (e.g. implementing a pull request
in git workflow).

Distribute

Figure 3

The “Distribute” phase is responsible for consuming image definitions and specifications
to build the next stage of artifacts such as container images, VM images and others. In
modern continuous integration and continuous deployment paradigms, the “Distribute”
phase consists of systematic application testing to identify bugs and faults in the software.
However, the adoption of Open Source and reusable packages results in the incorporation of

https://www.unido.org/overview/member-states/change-management/faq/what-four-eyes-principle

14

vulnerabilities and malware into container images. It is, therefore, imperative to incorporate
security focused steps such as scanning the image for the aforementioned threat vectors
as well as for validating the integrity of the images to protect against tampering. The next
paragraphs elaborate on security best practices that help developers and operators to identify
and protect container images from threats as well as techniques and tools to secure the
entire CI / CD pipeline and infrastructure. Furthermore, organizations may wish to encrypt
software artifacts if confidentiality is desired or needed.

Should software artifacts become untrusted due to compromise or other incident, teams
should revoke signing keys to ensure repudiation.

Build Pipeline

Continuous Integration (CI) servers should be isolated and restricted to projects of a similar
security classification or sensitivity. Infrastructure builds which require elevated privileges
should run on separate dedicated CI servers. Build policies should be enforced in the CI
pipeline and by the orchestrator’s admission controllers.

Supply chain tools can gather and sign build pipeline metadata. Later stages can then verify
the signatures to validate that the prerequisite pipeline stages have run.

The reader should ensure that the CI and Continuous Delivery (CD) infrastructure is as secure
as possible. For example, security updates should be prioritized to be installed ASAP, and
cryptographic keys should be protected from exfiltration via the use of Hardware Security
Modules (HSM) or Credential Managers.

Image Scanning

Scanning container images is a critical component of securing container applications
throughout the lifecycle. It is vital to do the scanning in the CI pipeline before deploying the
image to production. Incorporating this capability ensures that developers, operators, and
security professionals have detailed information on all known vulnerabilities and details
such as the severity, the CVSS score, and availability of mitigation/fixes. Incorporating
vulnerability scans of container images coupled with pipeline compliance rules ensure that
only sufficiently patched applications are deployed to production, reducing the potential
attack surface. Scanning of container images also helps to identify the presence of malware
in open source software packages or base image layers incorporated from open source image
repositories. Use of container image scanning provides teams with fact of vulnerability or
malware and does not provide prevention against vulnerabilities or malware. Organizations
need to be prudent when choosing to utilize image scanning, placing mechanisms to make
fact-of information actionable, as well as enforcing organization compliance rules.

15

Image hardening
Container images constitute the first level of output from the build pipeline. As such, they
must include security hardening that takes into consideration the threats to be mitigated
while allowing some just-in-time configurations at the runtime phase to fit in a larger
part of the ecosystem.

In respect of the security assurance objectives, the following questions should be evaluated:

•	 Should the execution environment be restricted to a specific user?
•	 Should the resource’s access be limited?
•	 Should process execution be restricted at kernel level?

Container Application Manifest Scanning
Application manifests describe the configurations required for the deployment of
containerized applications. As mentioned in the Benchmarks section, guides and
recommendations such as the NIST 800-190 publication recommend best practice security
practices and configurations for application containers. Consequently, it is vital to use tools to
scan these application manifests in the CI/CD pipeline in order to identify configurations that
could potentially result in an insecure deployment posture.

Container application manifest hardening
As for container images, container application manifest hardening can be thought of and be
implemented at build and as well as runtime.

In respect of the security assurance objectives, the following questions should be evaluated:
•	 What minimal constraints should the runtime execution ecosystem comply with?

Testing
Cloud native applications should be subjected to the same suite and standard of quality
testing as traditional applications. These include the concepts of clean code, adherence to
the Test Pyramid, application security scanning and linting through static application security
testing (SAST), dependency analysis and scanning, dynamic application security testing
(DAST) (e.g. mocking), application instrumentation, and full infrastructure with tests available
to developers in local workflows. Automated test results should map back to requirements
for dual attestation (developer and tool) for real-time security assurance to security and
compliance teams.

Once a security bug has been identified (e.g. an incorrect firewall or routing rule), if root cause
analysis determines that it has a reasonable chance of recurring, the developers should write

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.fxf8spniha0n
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://martinfowler.com/articles/practical-test-pyramid.html

16

an automated test to prevent the regression from being repeated. At the test failure, teams
received feedback to correct the bug, and with the next merge, the test will pass (assuming it
was corrected). Doing so defends against regression from future changes to that code.

Unit testing of infrastructure is preventative control and targets entities and inputs defined
in Infrastructure-as-Code (IaC) configuration. Security testing of built infrastructure is
a detective control and combines assurance, historical regressions, and unexpected
configuration detection (firewall rules open to the world, overprivileged IAM policies,
unauthenticated endpoints, etc.)

Hardening of infrastructure and workloads should be supported by comprehensive test
suites, which allows for incremental hardening as the system matures. Tests to verify
hardening has occurred should exist during the build but also be executed at deployment to
evaluate any changes or regression that may have occurred throughout the lifecycle.

Static Analysis and Security Testing
Static analysis of IaC, application manifests, and software code may cover linting, identifying
misconfigurations and vulnerability scanning. IaC code should be subject to the same pipeline
policy controls as do application workloads.

IaC is gaining popularity and its implementation is rapidly increasing among organizations to
deploy cloud and container infrastructure. Consequently, insecure configurations in these
templates can result in exposing attack vectors.

These templates should be scanned for insecure configurations and other security controls
using automated tools before deploying the application and infrastructure artifacts. Key
misconfigurations to keep an eye out for include:

•	 Vulnerabilities contained within images specified in the application manifests
•	 Configuration settings, such as containers that can escalate privileges.
•	 Identification of the security contexts and system calls, which can compromise a system.
•	 Resource limit settings

Dynamic Analysis
Dynamic analysis of deployed infrastructure may include detecting RBAC and IAM
configuration drift, validating the expected network attack surface, and ensuring that a
SOC can detect unusual behavior in dedicated test environments to configure alerting for
production. Dynamic analysis is considered to be a part of testing however, it is expected to
occur in a non-production runtime environment.

17

Security Tests
Automated security testing of applications and infrastructure should be an integral focus
within security teams. Test suites should be continuously updated to replicate threats in-
line with the organizational threat model and can be reused for security regression testing
as the system evolves. Automated security tests increase security and release velocity by
removing manual security gates, such as validation and manual control implementation at
a single checkpoint, which is time-consuming and inadequate. Automated security testing
also demonstrates control efficacy on demand by explicitly attempting to carry out the
threats, thus improving the system’s security and adherence to any embedded compliance
requirements in real-time.

Artifacts & Images

Registry Staging
Due to the use of open source components that are often pulled from public sources,
organizations should create several stages of registries in their pipelines. Only authorized
developers should be able to access public registries and pull base images, which are then
stored in an internal registry for wide consumption within the organization. It is also advised
to have separate private registries for keeping development artifacts per team or group, and
finally a staging or pre-production registry for images ready for production. This enables
tighter control over the provenance and security of open source components, while enabling
different types of testing for stages in the CI/CD chain.

For any registry used, access control through a dedicated authentication and permission
model must be implemented. Use mutually-authenticated TLS for all registry connections
(among other interactions within the architecture).

Signing, Trust, and Integrity
Digital signing of image content at build time and validation of the signed data before use
protects that image data from tampering between build and runtime, thus ensuring the
integrity and provenance of an artifact. Confirmation starts with a process to indicate that
an artifact was vetted and approved. The trust confirmation also includes verifying that
the artifact has a valid signature. In the simplest case, each artifact can be signed by one
signer to indicate a single testing and validation process that the artifact has gone through.
However, the software supply chain is more complex in most cases, and creating a single
artifact relies on multiple validation steps, thus depending on a conglomerate of entities’ trust.

18

Examples of this are:
•	 Container image signing - the process of signing a container image manifest
•	 Configuration signing - signing of a config file, i.e. application config files: most

common in the case of a GitOps approach, where there can be a process to validate
and check configurations.

•	 Package signing - Signing of a package of artifacts, like application packages.

For generic software artifacts such as libraries or OCI artifacts, signing these artifacts
indicates their provenance of approved usage by the organization. Verification of these
artifacts is equally crucial in ensuring that only the authorized artifacts are allowed. It is
strongly recommended that repositories require mutual authentication to make changes to
images in registries or to commit code to repositories.

Encryption
Container Image Encryption encrypts a container image so that its contents are confidential.
The container image contents are encrypted to ensure that they remain confidential for
promotion from build time through runtime. In the event of a compromised distribution, the
image’s registry contents remain secret, which can help for use cases such as protecting
trade secrets or other confidential material.

Another common use of Container Image Encryption is to enforce container image
authorization. When image encryption is coupled with key management attestation and/or
authorization and credential distribution, it is possible to require that a container image can
only run on particular platforms. Container image authorization is useful for compliance use
cases such as geo-fencing or export control and digital rights media management.

Deploy

 Figure 4

19

The “Deploy” phase is responsible for incorporating a sequence of ‘pre-flight’ checks in order
to ensure that the applications that are going to be deployed in the runtime environment
conform and comply with organization wide security and compliance policies.

Pre-Flight Deployment Checks
Prior to deployment, organizations should verify the existence, applicability, and current state of:

•	 Image signature and integrity
•	 Image runtime policies (e.g absence of malware or critical vulnerabilities)
•	 Container runtime policies (e.g absence of excessive privileges)
•	 Host vulnerability and compliance controls
•	 Workload, application, and network security policies

Observability & Metrics
Instituting observability and metrics into cloud native architectures delivers security insights
so appropriate stakeholders can resolve and mitigate anomalies appearing in reporting; tools
in this area can help collect and visualize this information. Through the use of behavioral and
heuristic analysis teams can detect and escalate outliers, suspicious events, and unexplained
calls to appropriate stakeholders. Artificial intelligence (AI), machine learning (ML), or
statistical modeling are all mechanisms that are encouraged to assist in behavioral and
heuristic analysis development.

Response & Investigation
An application should provide logs regarding authentication, authorization, actions, and
failures. The developer should include this capability as part of planning and design phases.
These elements provide a trail of evidence to follow when an investigation takes place and a
root cause needs to be established.

Forensics capabilities are integral part of any incident response and mitigation activity.
They provide evidence to determine the root cause of an incident and provide feedback for
any mitigation to be put in place. The short lived nature of the container environment requires
a more agile toolset to capture and analyze any evidence. Integrating forensics capabilities
into an incident response plan and procedures will provide the means to acquire and process
evidence, decrease the time to determine root cause, and minimize exposure to
a compromise.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.tlhq6ssgript

20

Runtime Environment

Figure 5

The Runtime phase comprises three critical areas: compute, access, and storage. While the
runtime environment is dependent on the successful completion of the develop, distribute,
and deploy phases, the security of the runtime is dependent on the efficacy of the security
practices of the prior phases. The following paragraphs detail the security requirements and
implications for each of these critical components.

Compute
Cloud native compute is a highly complex and continually evolving construct. Without
core components to make compute utilization occur, organizations cannot ensure
workloads are secure.

Considering that containers provide software based virtualization for multi-tenant
applications on a shared host, it is important to use a container specific operating system,
which is a read-only OS with other services disabled. This helps in reducing the attack surface.
This also provides isolation and resource confinement that enables developers to run isolated
applications on a shared host kernel. To allow defense in depth it’s also recommended to not
allow disparate data sensitive workloads be run on the same OS kernel.

In order for security to span all layers of container platforms and services, a hardware
root of trust based in Trusted Platform Module (TPM) or vTPM can be used. The chain of
trust rooted in hardware can be extended to the OS kernel and its components to enable

21

cryptographic verification of trusted boot, system images, container runtimes, and
container images, and so on.

Operating systems provide basic system components like crypto libraries used for remote
connections and kernel functions that are used for process initiation, management etc. These
can have vulnerabilities and, because they provide underlying compute baseline for the
containers they can impact all the containers and apps that run on these hosts. At the same
time improperly configured containers can impact the host kernel security and hence all the
services running in containers running on that host. Refer the details within the Distribute
phase for more information.

Orchestration
Any orchestrator has several components that are separated into different planes, such
as control and data. Sometimes, there is a need to have a higher-level construct of multi-
deployment management responsible for maintaining state across several different control
planes that co-exist independently of each other.

Any orchestration system has a number of threats that impact the overall security of the
deployment and continued security at runtime. Malicious access to an orchestrator’s API,
unauthorized access and changes to the key-value store, orchestrator dashboard to control
clusters, intercept control plane traffic, API misuse, intercepting application traffic, and so on
are all potential threat areas. It is important to use best practices and configuration hardening
for any orchestrator to prevent exposure to these threats, several exist. It is also important to
monitor and detect any changes to the initial configurations made in runtime to ensure the
continued security posture of the cluster. Other security best practices such as minimizing
administrative access to the control plane, segregation of duties and principle of least
privilege should be enforced.

Security Policies
It is essential to consider the security features and various configuration options of your
orchestrator to control the security privileges the container runtime can use to spawn
containers. The use of higher level policy and governance constructs may enforce those
security guardrails.

Resource Requests and Limits
Applying different object level and resource requests and limits via cgroups helps prevent
exhaustion of node and cluster level resources by one misbehaving workload due to an
intentional (e.g., fork bomb attack or cryptocurrency mining) or unintentional (e.g., reading
a large file in memory without input validation, horizontal autoscaling to exhaust compute

5 CIsecurity.org maintains a listing of benchmarks for hardening

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.poslf4b0b0ms
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.poslf4b0b0ms
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

22

resources) issue.

Audit Log Analysis
Audit Log analysis is one of the most established methods to identify and correlate system
compromise, abuse, or misconfiguration. Continued automation of audit log analysis and
correlation is of paramount importance to security teams as cloud native architectures
are capable of generating more granular audit configuration and filtering than traditional
legacy systems for workloads. Additionally, the interoperability of cloud native logs
allows for advanced filtering to prevent overloads in downstream processing. What is
critical here, as with traditional log analysis, is the generation of actionable audit events
that correlate/contextualize data from logs into “information” that can drive decision
trees/incident response.

Non-compliant violations are detected based on a pre-configured set of rules that filter
violations of the organization’s policies.

To have the ability to audit actions of entities using the cluster, it is vital to enable API auditing
with a filter for a specific set of API Groups or verbs, either of interest to a security team,
cluster administrators, or other teams by field of study. Immediate forwarding of logs to a
location inaccessible via cluster-level credentials also defeats an attacker’s attempt to cover
their tracks by disabling logs or deleting their activity logs. The systems processing alerts
should be periodically tuned for false positives to avoid alert flooding, fatigue, and false
negatives after security incidents that were not detected by the system.

Control Plane Authentication and Certificate Root of Trust
The orchestrator administrators should configure all orchestrator control plane components
such as controller-manager, scheduler, API server, and kubelet (if applicable) to communicate
via mutual authentication and certificate validation with a periodically rotated certificate in
addition to existing control plane hardening. The issuing CA can be a default orchestrator CA
or an external CA. Particular attention should be given by the administrators to protect the
CA’s private key. For more information on extending or establishing trust, refer to the identity
portion of this paper.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3f703zlu80we
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3f703zlu80we

23

Secrets Encryption
It is possible to manage secrets in a container orchestration or deployment environment
through use of an external secrets manager or natively using the orchestrator’s secrets.
When using a native secret store, it is crucial to be aware that several different protection
methods are available:

•	 Encryption with an external Key Management Store (KMS)
•	 Leveraging a KMS is a secure way to protect secrets in the orchestrator secret store

where key encryption in an external KMS encrypts the Data Encryption Key (DEK)
that encrypts the secrets stored at rest in etcd. This method does have an option to
cache DEKs in memory to reduce the dependency on the availability of the external
KMS and faster decryption of secrets during pod creation time.

•	 Encryption managed by orchestrator
•	 This methodology encrypts the secrets stored in the orchestrator, but the encryption

key is also managed by the orchestrator (e.g., a config file of the orchestrator).

•	 No encryption
•	 For example, with some orchestrators, secrets are base64 encoded and stored in

clear-text in the key-value store by default

Using an external secrets manager can limit the risks of using unencrypted secrets and
ease the complexity of key management. Most of the time those tools are provided as
controllers or operators that can inject secrets at runtime and handle their rotations
transparently.

Containers

Runtime
The runtime environment of a container needs to be monitored and secured from a
process, file, and network perspective. Only sanctioned capabilities and system calls (e.g.
seccomp filters), should be allowed to execute or be invoked in a container by the host
operating system. Changes to critical mount points and files should be monitored and
prevented. Configuration must prevent changes to binaries, certificates, and remote access
configurations. The configuration must also prevent ingress and egress network access
for containers to only what is required to operate. Additionally, network traffic to malicious
domains should be detected and denied.

24

Microservices and Eliminating Implicit Trust
The perimeter for containerized applications deployed as microservices is the microservice
itself. Therefore, it is necessary to define policies that restrict communication only between
sanctioned microservice pairs. The inclusion of zero trust in the microservice architecture
reduces the blast radius by preventing lateral movement should a microservice be
compromised. Operators should ensure that they are using capabilities such as network
policies to ensure that east-west network communication within the container deployment is
limited to only that which is authorized for access. There is some initial work done to provide
strategies for microservices security through NIST SP 800-204 and may serve as a guide for
implementing secure microservice architectures.

Image Trust & Content Protection
Utilization of a policy agent to enforce or control authorized, signed container images allows
organizations to provide assurance of the image provenance for operational workloads.
Further, inclusion of encrypted containers allows for the protection of sensitive sources,
methods, or data that exist within the container.

Service Mesh
A service mesh provides connectivity between the services that adds additional capabilities
like traffic control, service discovery, load balancing, resilience, observability, security, and
so on. A service mesh allows microservices to offload these capabilities from application-
level libraries and allows developers to focus on differentiating business logic. In order to
effectively ensure secure communications between services in cloud native environments,
organizations should implement a service mesh to eliminate implicit trust within their
pods and across workloads, achieved through data-in-motion encryption. Utilization of a
service mesh also resolves identity issues where traditional layer 3 and layer 4 identities, IP
addresses, no longer cleanly map to workloads. Service mesh provides not only network level
isolation and security but also network-level resiliency capabilities such as retry, timeout, and
implementing various circuit-breaker capabilities. Streaming platforms can benefit from a
service mesh for added security by using workload level authorization to set access rules for
topics or brokers.

It is important to note that implementation of a service mesh can help reduce the attack
surface of a cloud native deployment, and provide a key framework for building zero trust
application networks.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.3nqyr7f883rx
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.ukcqa325efui
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.8999rr470gwb
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk

25

Detection at Runtime
Monitoring deployed workloads should provide teams with validation that the true operational
state is the expected state. Organizations cannot forgo periodic security scanning and
monitoring within their environments without turning their workloads into an unsupervised
playground for attackers. Utilization of components that detect, track, aggregate and report
system calls and network traffic from a container should be leveraged to look for unexpected
or malicious behavior.

While regression testing and security tests can help prevent known, expected issues from
moving to production environments, they cannot stop everything. Workloads should be
dynamically scanned to detect malicious or insidious behavior for which no known occurrence
yet exists. Events such as an extended sleep command that executes data exfiltration from
etcd after the workload has been running for X amount of days are not expected in the majority
of environments and therefore are not included in security tests. The aspect that workloads
can have time or event delayed trojan horses is only detectable by comparing to baseline
expected behavior, often discovered during thorough activity and scan monitoring.

Further, workloads will become vulnerable at the time of or after they are deployed.
Organizations should continuously scan their environments to detect which workloads
are now vulnerable. Understanding the make-up or bill of materials for each workload can
help organizations quickly identify where vulnerabilities lie. Additional information about
those vulnerabilities, such as exploit maturity, and vulnerable path in use are critical to
determining the actual risk to workloads and can help organizations prioritize updates to
at-risk applications.

Functions
Serverless functions are susceptible to various attacks and therefore need to be
appropriately protected. Processes must execute only functions explicitly defined in an
allow list. Additionally, functions should not be allowed to make changes to critical file
system mount points.

The functions must have restrictions that only allow access to sanctioned services, either
through networking restrictions or least privilege in permission models. Additionally, the
egress network connection must be monitored by administrators to detect and, where
possible, prevent access to C&C (command and control) and other malicious network
domains. Ingress network inspection must also be considered in order to detect and remove
malicious payloads and commands that can be used in exfiltration. For instance, SQL
injection attacks can be detected using inspection.

Serverless functions have a number of threats and controls available for tenants are limited.
Broken authentication and insecure API integrations with dependent services are some

https://www.ntia.gov/SBOM

26

of these issues. Ensuring all serverless functions are run in tenant-based resource or
performance isolation for similar data classifications may assist in resolving this, however,
they can impact the performance due to limitations in the address space available to the
isolation environment.

Bootstrapping
Trust needs to be bootstrapped in the compute nodes to ensure that workloads and
configurations are run on the correct nodes. Bootstrapping ensures that the compute is in
the correct physical and logical location and provided with the ability to authenticate itself.
These steps are usually part of the cloud provider’s provisioning. However, methods are
available to verify trust, relying less on a third party.

Storage
Cloud Native Storage covers a broad set of technologies that are bucketed into presented
storage and accessed storage. Presented storage is storage made available to workloads
such as volumes and includes block stores, filesystems and shared file systems. Access
storage is storage that is accessed via an application API, and includes object stores, key value
stores, and databases.

Storage systems contain a data access interface that defines how applications or
workloads store or consume data that is persisted by the storage system or service.
This interface can be protected by access controls, authentication, authorization, and
potentially encryption in transit.

Storage systems also contain a control plane management interface which is typically an
API protected by authentication and TLS, although finer grained access may be available. In
general the control interface is only accessed via a service account by an orchestrator or
service broker.

Storage Stack
Any storage solution is composed of multiple layers of functionality that define how data is
stored, retrieved, protected and interacts with an application, orchestrator and/or operating
system. Each of these layers has the potential to influence and impact the security of the
storage system. A common example may be a filesystem that persists files or blocks to an
object store. It is equally important to protect every layer in the topology, and not just the top
layer where data is accessed.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk

27

Orchestration

Most orchestrated systems will implement a variety of abstraction and virtualization
layers that may include filesystems (such as bind mounts), volume managers, and the
application of permissions at a user or group level based on orchestrator policies. As
with many components of containerization and microservice architectures, protecting
volumes and storage will always rely on the protections in place from other capabilities.
If a user is able to escalate their privileges within the orchestrator or container runtime
to root they can wreak havoc within the environment. The implementation of zero
trust, least privilege, and access control and enforcement are linchpins in successfully
securing storage in cloud native architectures.

System Topology & Data Protection

Understanding a system’s storage topology is key in order to secure both the data access
path to the storage system and the intra-node communication in distributed topologies.

Common topologies include centralized models where all compute nodes access a central
storage service, distributed models that distribute the function over a number of nodes, and
hyperconverged models where application and storage workloads are combined on the same
nodes. The selection of specific, layered security mechanisms to protect data in storage and
in transit between storage locations is driven on the topology in use by the system.

A key function of any storage system is to provide protection of the data that is being
persisted in the system or service. This protection is implemented first through availability of
the data to authorized users and should exist as a transparent layer in the system. This can
include technologies such as parity or mirroring, erasure coding or replicas. Protection is
next implemented for integrity, in which storage systems will add hashing and checksums to
blocks, objects or files primarily designed to detect and recover from corrupted data, but can
also add a layer of protection against the tampering of data.

Caching

Caching layers, often fully fledged separate systems, are implemented to improve the
performance of storage systems, especially filesystems, objects and databases. The
appropriate access controls and security policies need to be applied to the caching layer as
the cache will be fronting the access to the actual storage back-end.

https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=kix.kyffcmw3zhk
https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=kix.kyffcmw3zhk
https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=id.bl312cp5xyv1
https://docs.google.com/document/d/1aAkuhZMJ6-Xq6xP0gh1wxIM8OhUETqEFLhoRdxYHN5c/edit#bookmark=kix.3f703zlu80we

28

Data Services

Storage systems often implement a number of data services which complement the core
storage function by providing additional functionality that may be implemented at different
layers of the stack and may include replication and snapshots (point-in-time copies of
data). These services are often used to move copies of data to remote locations, and it is
important to ensure that the same access controls and security policies are applied to the
data at the remote location.

Physical or Non-Volatile Layer

Cloud native storage security is not restricted to virtual cloud native architectures as cloud
native capabilities can be deployed on-prem, and even virtual offerings have a physical
presence. It is important to remember that storage systems will ultimately persist data on some
form of physical storage layer which is generally non-volatile. Modern physical storage such as
SSDs often support security functions such as self encryption, as per the OPAL standards, and
rapid/secure erasure functions. Secure erasure is important when devices that contain data
need to leave a secure physical location (e.g. to be returned to a vendor after developing a fault).

Storage Encryption

Storage systems can provide methods to ensure confidentiality of data through data
encryption. Data encryption can be implemented for data in transit or data at rest, and when
leveraged at the storage system can ensure that the encryption function is implemented
independently to the application.

Encryption can have an impact on performance as it implies a compute overhead, but
acceleration options are available on many systems which can reduce the overhead. When
selecting the kind of encryption for data, consider the data path, size, and frequency of access
as well any regulations or additional security protections that may require more secure
algorithms to be used. Additionally, teams should not neglect to consider the use of caches
when considering encryption requirements for their architectures.

Encryption services can be implemented for data in transit (protecting data in the network)
and for data at rest (protecting data on disk). The encryption may be implemented in the
storage client or storage server and granularity of the encryption will vary by system (e.g.
per volume, per group or global keys). In many systems, data in transit is protected with TLS
(which has the added benefit of providing an authentication layer via certificates7. Older
protocols (such as iscsi) may be harder to secure in transit (although more complex solutions
such as IPsec or encrypted VPNs8 can be used). Data at rest is generally protected using

7 It is critical to note that while authentication is available for use, mutual authentication is the preferred mechanism to not only verify
the client but also the server (outsider versus insider).
8 Utilization of a VPN does not guarantee encryption.

https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=kix.kyffcmw3zhk

29

standard symmetric encryption algorithms such as AES, and may be deployed with specific
modes of encryption such as XTS for block devices.

The encryption function will often depend on integration with a key management system.

Persistent Volume Protection
Protecting access to volumes is critical to ensure only authorized containers and workloads
may leverage volumes provided. It is imperative to define trust boundaries for namespaces
to cordon access to volumes. Leverage existing or create new security policies that prevent
groups of containers from accessing volume mounts on worker nodes and ensure only
appropriate worker nodes have access to volumes. It is especially critical as privileged
containers can gain access to a mounted volume in a different namespace, so additional
precautions are needed.

Specifying the UID or GID of the volume still permits access by container in the same
namespace and will not provide data protection. Network file system version 3 (NFSv3)
assumes the client has already performed authentication and authorization and does not
perform validation. It is critical to consider where authentication and authorization occur and
whether validation of that action exists when implementing protections.

Artifact Registries
Registries should accommodate technologies to sign and verify OCI artifacts. It is also
important to ensure that the caching and distribution tools also provide the capability to sign,
encrypt and provide checksums to ensure that the caching layer can detect tampering or
attempts to poison the dataset.

The CNCF Storage Whitepaper provides additional background on the concepts, terminology,
usage patterns and technology classes of cloud native storage.

Access

Identity and Access Management
A comprehensive identity and access management (IAM) solution for cloud native
architectures requires service identity at a minimum. Organizations maintaining or operating
on-premise or hybrid clouds need user and device identity management. For applications
and workloads distributed across multi-cloud environments, identity federation is critical to a
successful implementation.

Applications and workloads should be explicitly authorized to communicate with each
other using mutual authentication. Due to the ephemeral nature of cloud computing, key

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#heading=h.ruzpb2ykwf3
https://bit.ly/cncf-storage-whitepaperV2

30

rotation and lifespan need to be frequent and short to maintain the demands of high-velocity
capabilities and control and limit the blast radius of credential compromise.

The utilization of identity management services from cloud providers is dependent on
industry-specific use cases. Users, independent from the cloud-provider, should
generate and manage credentials and keys for sensitive workloads such as health or
finance information.

For the client and server to bi-directionally verify identity via cryptography, all workloads must
leverage mutual/two-way transport authentication.

Authentication and authorization must be determined independently (decision point) and
enforced (enforcement point) within and across the environment. Ideally, secure operation
for all workloads should be confirmed in real-time, verifying updated access control and
file permissions where possible as caching may permit unauthorized access (if access was
revoked and never validated). Authorization for workloads are granted based on attributes
and roles/permissions for which they have been assigned. It is strongly recommended
organizations use both Attribute-Based Access Control (ABAC) and Role-Based Access
Control (RBAC) to provide granular authorization enforcement in all environments and
throughout their workload lifecycle. Such posture can enable defense-in-depth, where
all workloads are able to accept, to consume, and to forward the identity of the end user
for contextual or dynamic authorization. This can be achieved through the use of identity
documents and tokens. Not enforcing this limits an organization’s ability to truly perform
least privilege access control on system-to-system and service-to-service calls.

It is critical to note, application or service identity is also essential in the context of
microservices, where the identities for apps are primarily subject to be spoofed and
impersonated by a malicious service. Utilization of a strong identity framework and service
mesh can help overcome these issues.

All human and non-human cluster and workload operators must be authenticated and all
their actions must be evaluated against access control policies that will evaluate the context,
purpose, and output of each request. In order to simplify the authentication process, identity
federation can be configured to allow usage of enterprise capabilities such as multi-factor
authentication. Authorization must then be enforced with access control mechanisms
mentioned in this section.

https://docs.google.com/document/d/1yrPehm1-NaccFxydof2i-cLak15o5pjWFS9e41IUxtw/edit#bookmark=id.bl312cp5xyv1

31

Credential Management

Hardware Security Modules (HSM)
Whenever possible, the reader should use technologies such as HSMs to physically protect
cryptographic secrets with an Encryption Key that does not leave the HSM. If this is not
possible, software-based credential managers should be used.

Credential Management Cycle
Cryptographic secrets should be generated securely within either an HSM or a software-
based secrets management system.

Secrets, whenever possible, should have a short expiration period or time to live after which
they become useless. Secret management should be highly available and have high ease
of generation as these characteristics are prerequisites for the short-lived secrets. While
not recommended, if organizations are using long-lived secrets, appropriate processes and
guidance should be established for periodic rotation or revocation, especially in case of
accidental disclosure of a secret. All secrets must be distributed in transit through secure
communication channels and should be protected commensurate with the level of access or
data they are protecting.

In any case, secrets should be injected at runtime within the workloads through non
persistent mechanisms that are immune to leaks via logs, audit, or system dumps (i.e. in-
memory shared volumes instead of environment variables).

Availability

Denial of Service (DoS) & Distributed Denial of Service (DDoS)
A denial-of-service attack (DoS attack) in the context of cloud native applications is a class of
cyber-attacks. The perpetrator seeks to temporarily or indefinitely make the cloud native application
unavailable to its intended users (human or automated). The perpetrator may do this via disrupting
critical cloud native application components (such as microservices), disrupting the orchestration
layer responsible for keeping the microservices running, or disrupting health monitoring systems
responsible for scaling the application. A denial of service is typically accomplished by flooding
critical microservices or resources with superfluous requests to overload systems and prevent
some or all legitimate requests from being fulfilled.

A distributed denial-of-service attack (DDoS attack) typically involves a high volume of incoming
traffic flooding the cloud native application services or the upstream networks to which they
depend. Typically the attack is mounted from many different sources. Volumetric attacks are
mitigated by detecting and deflecting the attacks before they reach the cloud native application.

32

Security Assurance
Security is fundamentally a risk management process that seeks to identify and address
risks posed to a system. The iterative and perpetual hardening of systems will mitigate,
reduce, or transfer risk depending on component’s or organization risk profiles and
tolerances. The predisposing concepts of hardening, while legacy at their core, can still be
applied to a security forward team by evaluating components and their make up against
minimal, yet flexible, functionality. For instance, as teams determine an updated base image,
considerations for additional ports, permissions, and packages added with an update should
be reviewed and either accepted, altered, or restricted.

In contrast, compliance standards form principles of controls to ascertain or create
requirements definitions by which systems are assessed against. The outcomes of the
assessment are binary (pass or fail) but may contain Type 1 (false positive) or Type 2 (false
negative) errors and should be evaluated as the result of tests from a CI/CD pipeline,
akin to the results of any testing in a pipeline. Thus, compliance and security assurance
are complementary processes but are not interchangeable. A compliant system is not
guaranteed to be secure, nor a secure system guaranteed to be compliant.

Threat Modeling
For organizations adopting cloud native, the primary mechanism of identifying risk and
resulting controls and mitigations is to perform threat modeling of applications, data flows,
and supporting processes and infrastructure. The method by which this is accomplished is
minimally different from typical threat modeling. The below guidance is an enhancement of
the four step OWASP threat modeling recommended for cloud native capabilities.

End-to-end architecture
A clear understanding of the organization’s or individual’s cloud native architecture
should result in data impact guidance and classifications. This helps teams organize data
distribution within the architecture as well as the additional protection mechanisms for it later
on. cloud native diagrams and documentation should not only include the core components
of the overall system design but should also take into consideration the location of the source
code, the buckets and other storage mechanisms in use, and any additional aspects of the
software development cycle. These are all areas that must be considered when initiating
threat modeling for cloud native.

https://owasp.org/www-community/Threat_Modeling

33

Threat Identification
When considering threats specific to an organization’s cloud native capabilities, it is
recommended to leverage a mature, well-used model of threats such as STRIDE or OCTAVE.
Common threats organizations may wish to consider for their cloud native architectures
includes, but is not limited to:

•	 Spoofing a cluster admin by stealing the authentication credentials via a social
engineering attack

•	 Tampering of an API server config file or certificate could result in failed API server
restart or mutual TLS authentication failures

•	 Repudiation of actions of an attacker because of disabled or misconfigured API auditing
could result in a lack of evidence of a potential attack

•	 Information disclosure is possible if an attacker compromises a running workload and is
able to exfiltrate data to an external entity

•	 Denial of Service (DoS) resulting from a pod that does not have resource limits applied
therefore consumes the entire node level CPU and memory, worker node is then lost

•	 Elevation of privilege could happen if a pod is running with unrestricted or higher
privileged pod security policy or by modifying the security context of a pod or a container

Threat actors to consider for cloud native security are consistent with existing
threat modeling:

•	 Malicious insider
•	 Uninformed insider
•	 Malicious outsider
•	 Uninformed outsider

Organizations are recommended to leverage the existing resources available in the cloud
native landscape for additional information on threats to cloud native architecture.

The utilization of pipelines and infrastructure as code (IaC) may provide compensating or
mitigating controls for some threats or reduce likelihood of their success or occurrence.
As with any cloud native process, it is important to iterate and provide feedback. In
the context of threat modeling, this means re-evaluating if the existing measures,
mechanisms, and matrices accurately reflect the operational state given the continual
changes to the architecture.

Threat Intelligence
Cloud native applications by design and purpose are a collection of multiple dynamic
components compromised from first-party and third-party code and tools, which means
threat intelligence must be applied for network activity and cloud native application
components. Cyber threat intelligence is information about threats and threat actors that

34

helps mitigate harmful events. Threat intelligence in cloud native systems would make use of
indicators observed on a network or host such as IP addresses, domain names, URLs, and file
hashes which can be used to assist in the identification of threats. Behavioral indicators, such
as threat actor tactics, techniques, and procedures can also be used to identify threat actor
activity in cloud native components. The MITRE ATT&CK framework for Cloud includes cloud
native tactics and techniques that can be leveraged as a starting point for establishing and
validating observability.

Incident Response
For an organization with existing incident response and triaging workflow, special attention
should be paid to how that can be applied to cloud native workloads which may not always
conform with some underlying assumptions about node isolation (new pod instances could
run on a different server), networking (e.g. IP addresses are assigned dynamically) and
immutability (e.g. runtime changes to container are not persisted across restarts). Hence, it’s
important to revisit these assumptions and reapply or update the incident response playbook
as needed. Observability and forensic tools need to understand cloud native specific
constructs such as pods and containers so that the state of a compromised system can be
maintained or recreated. Evidence mishandling can sometimes be unintentional in intent-
based orchestrators, which are built to treat workloads as “cattle, not pets”. As a side note,
building an incident response and triaging strategy from the ground up, although possible, is
out of scope for this document.

Security Stack

 Environment

Pre (Workload) Flight Security Tools
Pre-workload security tools should maximize hardening and ensure adherence to security
best practices while minimizing privileges with respect to the hosting environment, network,
and the orchestration layer. Tools should also ensure compliance will not break at runtime.

Compute & Node Checks
Organizations should leverage tooling that assert hardening and security of compute before
resources are marked as ready to accept workloads. Host Vulnerability Scanners and CIS
benchmark scanners are recommended for this.

https://attack.mitre.org/matrices/enterprise/cloud/

35

Run Contexts
Security tools that cover the surface area of pre-workload security hygiene checks are
best suited to run as part of CI pipelines to scan files, artifacts such as container images,
and IaC. Security tools that run in CD pipelines are more suitable to run in the context of a
specific environment and take into consideration the specific configuration for the specified
environment. Cloud native orchestrators that support the concept of admission time checks,
permit organizations to leverage admission delivery hooks to apply tools that complement
earlier stages of the pipeline.

In-Flight Security Tools

Workload & Host Runtime Security

Runtime security tools can be broken into four key protection surface areas:
•	 process, container, or system level security
•	 network security
•	 data security
•	 application security

For each protection surface area applicable to an organization’s area of concern, a
combination of tools should be used. Policy driven tools implement rule based policies,
whether authored manually or through a recommendation system. Once applied, these
policy driven tools provide predictable results and can be applied in monitor-only or
enforcement-mode.

Threats and vulnerability feeds enable security tools to intercept anomalous behavior
and security events from unknown and identified threats. These feeds are normally
updated on a regular and frequent basis. The use of feeds provide a defense layer to
complement policy driven tools and can be implemented into tools that cover most
protection surface areas. Teams should look to network threat intelligence of known
command & control (C&C) servers, cryptomining domains, malware file checksums, etc.
within feeds to assist in updating policy tools.

While the existing tools can provide mechanisms to manage noise produced from false
positive and false negative issues and deal with known threats as well as regulating
operations with policy driven guardrails, machine learning (ML) based security tools provide
a detection layer of known and unknown threats beyond the boundaries predictable tools
can establish. For example, behavior based analysis of identity authorization logs to detect
insider threats and breaches or adaptive analysis of orchestrator audit logs to detect exploit
attempts or service account theft. ML driven analysis of host syscall patterns can be used to
detect container escape attempts or host exploit attempts.

Orchestration security tools that monitor and track security of the various cloud native
orchestration are normally offered as domain specific commercial offerings with a wide range

36

of capabilities spanning granular policy controls, compliance checks, AI/ML based anomaly
detection and decent integrations surface.

As with any cloud native workload, the tools used to monitor, report, or control the
security of the environment should be cloud native as well for ease of use, management,
and deployment.

Zero Trust Architecture
Zero trust architectures mitigate the threats of lateral movement within a network through
fine grained segmentation, micro-perimeters, and removing implicit trust to data, assets,
applications, and services (DAAS) with verification and enforcement policies. Most common
implementations of zero-trust architecture rely on cryptographic concepts to create zero
trust. This is primarily based on the ability to have specific key material secured in hardware
or tokens and managed in a way where they can be securely communicated to a platform.

The foundational building block that zero trust architecture usually consists of
several aspects:

•	 Each entity can create proof of who the identity is
•	 Entities are able to independently authenticate other identities (i.e. Public Key

Infrastructure)
•	 Communications between entities remain confidential and untampered

The zero trust framework creates the zero trust building blocks by leveraging a strong root
of trust: the ability to tie a tamper-resistant trust to an entity or process is the foundational
building block. It then requires attestations: the ability to attest, validate, and prove the
identity of an entity. For the example of container services, how do I check that this container
is who it claims to be. This needs to be verified with the orchestrator, but to trust the
orchestrator, we need to ensure it is running untampered, which can only be ensured if we are
running a trusted OS, BIOS, etc. Attestations are usually a chain as well.

Zero trust also requires secure communication between entities. While network
segmentation provides value to zero trust architectures and should be considered, is not an
end all solution to zero trust implementation. Orchestrator network policies as well as use of a
service mesh are all components of a comprehensive zero trust solution. More information on
zero trust concepts is available widely online.

Least Privilege
Least privilege is just as important, or perhaps the most important aspect of cloud native
architectures, and must be considered at all parts of the stack where an authentication
or authorization decision is made. Traditionally Least Privilege has been thought of at the
account layer whether that account is a human or a service.

37

In cloud native, least privilege must be applied at every layer of the stack. It should also
be considered when evaluating the specific tooling responsible for fulfilling each layer’s
execution. Organizations may find, as they explore various products and capabilities, that
many containers have privileged-by-default deployments or required root privileges to
operate. As a result, additional measures may need to be taken to isolate those elevated
privileges from the rest of the workload. Organizations should consider all areas to employ
isolation and least privilege in their workloads and deployments; from cgroups and system
calls in the runtime environment to artifact management and rootless builds.

To consistently reduce the potential attack surface and corresponding blast radius,
organizations need to implement the principle of least privilege at every level of their
architecture. This not only applies to the individuals performing various functions within
their roles but also to the services and workloads executing in a given environment. Rootless
services and containers are vital to ensuring that if an attacker does get into an organization’s
environment, they cannot easily traverse between the container they gain access to and the
underlying host or containers on other hosts.

Mandatory Access Control (MAC) implementations (e.g. SELinux and AppArmor) can limit the
privileges beyond those set to the container or namespace and provide additional container
isolation at the host level to prevent container breakout or pivoting from one container to
another to escalate privileges beyond those permitted by the access control in place.

Roles and Responsibilities
When moving to cloud native architectures and deployments, organizations should expect
to see adjustments in legacy security roles and responsibilities and create new security
roles specific to the cloud. With the rapid onset of modern development methodologies
and better alignment of IT activities with business needs, security must be adaptive,
commensurately applied with actual risk, and transparent. It is unreasonable to expect
developers and operations to become security experts. Security practitioners need to partner
with developers, operations, and other project life elements to make security and compliance
enforcement fully integrated with process modernization efforts and development lifecycles.
Doing so means findings are reported in real-time through the tools in use by developers for
habitual resolution, akin to how build failures are resolved at notice.

The blurred lines that often occur in DevOps environments should not replace clear separation
of duties (SoD) when it comes to managing security in cloud native environments. While
developers will be a lot more involved in implementing and executing security measures, they
do not set policy, need not gain visibility into areas that aren’t required for their role, etc. - this
separation should be implemented between roles and across product and application teams
in accordance with the organization’s risk tolerance and business practices. It is understood
this becomes difficult with smaller organizations when individuals perform many duties

38

to keep the business thriving. Nevertheless, implementing a distinct role to permission
alignment can assist in enforcing SoD as the organization continues to grow and cognitively
forces a mental switch in the activities being performed by the individual. Ultimately, allowing
for reorganization roles to be reassigned to new individuals without increasing scope of
access with the new assignment.

Organizations will need to reevaluate their asset risks as products and services migrate
to the cloud. With ownership and management changes of the technology in use and its
deployment stack, executives should expect significant risk posture changes. Shared
responsibility between providers and teams will require changes to thresholds in risk
acceptance, transference, and new mechanisms for mitigation.

Compliance
Designing a system with the appropriate set of security controls that address regulatory
and compliance guidance makes cloud native resources more secure. Doing so may also
make certification by relevant regulatory bodies and auditors easier, particularly if the system
design and planning is done to allow automated compliance to various regulatory bodies
through a plugin model. While compliance often requires utilization of security benchmarks
for increased security and configuration management enforcement, such as the Center for
Internet Security (CIS) benchmarks, it is important to note that utilization of machine readable
compliance control frameworks and languages are recommended.

Regulatory Audits
Many financial, health, government, and other entities need to comply with a specific set of
requirements to protect the system. The users trust the systems to keep their interactions
private and secure. Every organization should evaluate which regulatory standards apply to
them (e.g., PCI-DSS, HIPAA, FedRAMP, GDPR, etc.). They should then determine how specific
requirements apply to their cloud native systems and how they will implement those
standards’ real-world implementation. This evidence-gathering mechanism supporting
adherence to specific standards should be automated with non-repudiation guarantees
whenever possible.

39

Personas and Use Cases
The focus is on security, protection, detection, and auto-response where ever possible. It is
not necessarily development tooling alone, but security tooling that integrates transparently
into the development process to enforce security policies where fast feedback and most
immediate actions to remediate can occur. For specific information on cloud native security
use cases refer to the SIG-Security’s use cases listing.

Industries

Enterprise
Core areas of concern for Enterprise to adopt a cloud native model are maintaining the current
process and procedures while meeting the business objective. Keeping the interoperability,
data loss or leakage, and security risk exposure at a minimum when new standards and
practices are introduced throughout the organization.

Microbusiness
Core areas of concern for Small businesses to adopt a cloud native model are the ability to
focus on short term goals and foster innovation to meet intense competition. The lack of
resources, budget, technology depth, and best practice hinders their ability to adapt to cloud
native solutions. Small business requires repeatable patterns and a small IT footprint to solve
the challenges.

Finance
Core areas of concern for financial industries that are essential to successful cloud native
adoption are unauthorized disclosure of information, fraud, and fund availability. Fraud can
have a direct impact on fund availability, making the integrity of financial transactions of
paramount importance.

Healthcare
Core areas of concern for healthcare industries that are essential to successful cloud native
adoption are unauthorized disclosure of information, timeliness, and availability of records,
and accuracy of records. Due to the nature and practices of the healthcare industry, the
availability of records and their associated content is the basis by which medical decisions are
made. In the absence of such information, new records are developed.

https://github.com/cncf/sig-security/blob/master/usecases.md

40

Academia and Education
Core areas of concern for educational institutions for successful cloud native adoption
can be dependent upon the intended end user. Institutions catering to minors may
have additional legal requirements to protect the confidentiality of minors, and thereby
making access control critical. Beyond this, institutions should focus on the availability
of educational content to end users.

Public Sector
Core areas of concern for Public Sector organizations that are essential to successful
cloud native are security, data sovereignty, compliances, and vendor lock-in. The barriers
emerge from agencies placing regulations to protect the public interest. In the public
sector, it is essential to maintain harmony and trust between public and government entities.
Additionally, timeliness of deployments and features may also be a strong consideration. The
adoption of cloud native, along with modern methodologies, can increase organizational
velocity, which is critical to many areas of the public sector.

Evolution of Cloud Native Security
Container technologies are a continuously evolving space with rampant adoption. The
threat landscape for cloud native technologies and the corresponding security challenges
in mitigating and resolving these threats evolves as well. These, in addition to a complex
ecosystem for secure container platforms, require a fully formulated, well thought-out
security strategy, with technical controls and automation for security policy enforcement,
response, and operational discipline.

Containers provide enormous security benefits when appropriately implemented. They
provide greater transparency, modularity, reduced attack surface, easier application
components updates, and a consistent environment for application components to run.
This consistency allows for parallel security to thrive in development, test, and production
runtime environments. They also reduce the impact of enterprise wide security incidents
when enabling proper isolation built between applications (essentially enabling micro
segmentation in enterprises which may have a flat network) as part of a layered defense-in-
depth security strategy.

With all the current challenges in security, the number of security tools needed, and the
shortage of skills and talent in the market, securing a container platform is a monumental
challenge. We expect to see increased migration to the cloud as container service offerings
by cloud providers become more mature with more cloud native security & intelligence
tooling integrated over intercompatible specifications. These offerings reduce the overhead
for enterprises as part of the shared responsibility model.

41

Thus container adoption, and thereby cloud native adoption, will continue to fuel the digital
transformation for enterprises. Enterprises are already leveraging serverless architectures
and designs for some services, but building a whole business function using serverless still is
evolving, considering the challenges with reduced visibility when functions are orchestrated
to build a business function and an existing nebulous plethora of yet to be known security
challenges. In short, serverless adoption in cloud native architectures is expected to increase
over time as service provider security controls decrease overhead for consumers in a fashion
similar to the existing container ecosystem.

The threat landscape, however, generally remains the same, with top weaknesses consistently
being exploited by the same sets of actors. The most significant changes we see are
the manner and mechanisms by which attackers target cloud native organizations and
applications. Any attacks on container orchestrators and deployments are increasing, as seen
with the increase in cryptomining attacks through infiltrated or trojan horse images. As with
any innovative technology beginning to reach market saturation, it was only a matter of time
for malicious actors to exploit any low hanging fruit.

As these attacks become more prevalent, more intricate, and expand, cloud native security
has to evolve to put a more significant focus for enterprises and DevOps teams than where
it currently resides. We are seeing an increase in the use of security policies as code but
there is a lot of room for evolution and increased automation in security policy enforcement,
detection and response. It’s evident that immediate and automated security intelligence and
responses will be essential to thwart the attacks, and even self-heal from them. Perhaps even
adapt and integrate regression proofing9 as they occur.

Container forensics tools and technologies will need to evolve to keep pace with where
cloud native is headed. This is particularly critical as the number and complexity of incidents
increase in the context of infrastructure-as-a-service and other as-a-service models.

9 The concept of regression proofing is best explained as a facet of antifragile behaviors within technology environments.
Instead of remaining resilient and robust against adverse conditions and attacks, technology can proactively adapt and thrive
when subjected to them.

42

Conclusion
In the past fifteen years, the community has seen rapid adoption in cloud services and
technology, with a recent significant push towards cloud native models. As with any new
commodity in the security industry, innovators are poking and pushing technology forward
for early adoption and testing.

It is critical that organizations at the brink of the technology chasm, or in the early majority,
earnestly analyze and apply core security concepts to alleviate the lag in hardening and
environmental control.

While security-specific guidance and controls may not yet exist for most innovations we see
today and coming in the future, core security concepts in cloud native architectures can be
consistently applied while designing, developing, and deploying new capabilities.

These core security concepts are:

•	 Protection from unauthorized access (person and non-person entities) -

Ephemerality reduces asset exposure to unauthorized entities by consistently
rebasing from a known good state.

•	 Immutability to preserve the integrity of content and code.
•	 Availability of services, tooling, and content - Distribution provides resilience and

redundancy.
•	 Auditing and Accountability - Provides a mechanism to ensure that no irregularities

have occurred and to keep track of authorized changes.

43

Acronyms and Glossary
ABAC - Attribute Based Access Control
IAM - Identity and Access Management
RBAC - Role Based Access Control
SOC - Security Operations Center
IaC - Infrastructure as Code
CI - Continuous Integration
CD - Continuous Deployment
HSM - Hardware Security Module

References
NIST 800-204 Security Strategies for Microservices-based Application Systems
NIST 800-190 Application Container Security Guide
https://www.cisecurity.org/benchmark/Kubernetes/
Threat Modeling: 12 Available Methods
https://owasp.org/www-community/Application_Threat_Modeling
NIST Application Security Container Guide, Center for Internet Security (CIS), NIST Security Strategies
for microservices and OpenSCAP benchmarks exist for Docker, Kubernetes, and several managed
Kubernetes distributions.
MITRE ATT&CK Matrix For Kubernetes

Acknowledgements
This white paper is a community effort driven by the members of the CNCF Security-SIG. Thank you to
everyone for their outstanding contributions. Special thanks to Emily Fox and Jeyappragash JJ.

Contributors:
Aradhna Chetal - TIAA
Brandon Lum - IBM
Chase Pettet - Mirantis (Chase.Pettet@mirantis.com)
Emily Fox - US National Security Agency (NSA)
Gadi Naor - Alcide
Harmeet Singh - IBM
Jeff Lombardo - Independent
Jeyappragash JJ - Tetrate IO
Pushkar Joglekar - Visa
Rowan Baker - ControlPlane
Andrew Martin - ControlPlane
Trishank Karthik Kuppusamy - Datadog
Vinay Venkataraghavan - Prisma Cloud (Palo Alto Networks)
Wayne Haber - GitLab

Mark Bower

Alex Chircop - StorageOS

Reviewers:
@justincappos
@lumjjb
@whaber
@craigbox
@anvega
 @magnologan
Alok Raj - XenonStack (alok@xenonstack.com)
@nyrahul
@ranio1
Liz Rice, Aqua Security, TOC Liason
Justin Cormack, Docker, TOC Liason
@itaysk

https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://owasp.org/www-community/Application_Threat_Modeling
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.cisecurity.org/
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://www.open-scap.org/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.darkreading.com/threat-intelligence/microsofts-kubernetes-threat-matrix-heres-whats-missing/a/d-id/1339106
http://tiaa.org
https://www.ibm.com/
https://www.mirantis.com/
https://www.nsa.gov/
http://www.alcide.io
https://www.ibm.com/
https://www.tetrate.io/
https://visa.com/
https://control-plane.io/
ControlPlane
https://www.datadoghq.com/
https://www.paloaltonetworks.com/prisma/cloud
https://about.gitlab.com
https://www.xenonstack.com/
mailto:alok@xenonstack.com

44

