1011 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1011 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package flate implements the DEFLATE compressed data format, described in
 | 
						|
// RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
 | 
						|
// formats.
 | 
						|
package flate
 | 
						|
 | 
						|
import (
 | 
						|
	"bufio"
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"math/bits"
 | 
						|
	"strconv"
 | 
						|
	"sync"
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	maxCodeLen     = 16 // max length of Huffman code
 | 
						|
	maxCodeLenMask = 15 // mask for max length of Huffman code
 | 
						|
	// The next three numbers come from the RFC section 3.2.7, with the
 | 
						|
	// additional proviso in section 3.2.5 which implies that distance codes
 | 
						|
	// 30 and 31 should never occur in compressed data.
 | 
						|
	maxNumLit  = 286
 | 
						|
	maxNumDist = 30
 | 
						|
	numCodes   = 19 // number of codes in Huffman meta-code
 | 
						|
 | 
						|
	debugDecode = false
 | 
						|
)
 | 
						|
 | 
						|
// Value of length - 3 and extra bits.
 | 
						|
type lengthExtra struct {
 | 
						|
	length, extra uint8
 | 
						|
}
 | 
						|
 | 
						|
var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}}
 | 
						|
 | 
						|
// Initialize the fixedHuffmanDecoder only once upon first use.
 | 
						|
var fixedOnce sync.Once
 | 
						|
var fixedHuffmanDecoder huffmanDecoder
 | 
						|
 | 
						|
// A CorruptInputError reports the presence of corrupt input at a given offset.
 | 
						|
type CorruptInputError int64
 | 
						|
 | 
						|
func (e CorruptInputError) Error() string {
 | 
						|
	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
 | 
						|
}
 | 
						|
 | 
						|
// An InternalError reports an error in the flate code itself.
 | 
						|
type InternalError string
 | 
						|
 | 
						|
func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
 | 
						|
 | 
						|
// A ReadError reports an error encountered while reading input.
 | 
						|
//
 | 
						|
// Deprecated: No longer returned.
 | 
						|
type ReadError struct {
 | 
						|
	Offset int64 // byte offset where error occurred
 | 
						|
	Err    error // error returned by underlying Read
 | 
						|
}
 | 
						|
 | 
						|
func (e *ReadError) Error() string {
 | 
						|
	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
 | 
						|
}
 | 
						|
 | 
						|
// A WriteError reports an error encountered while writing output.
 | 
						|
//
 | 
						|
// Deprecated: No longer returned.
 | 
						|
type WriteError struct {
 | 
						|
	Offset int64 // byte offset where error occurred
 | 
						|
	Err    error // error returned by underlying Write
 | 
						|
}
 | 
						|
 | 
						|
func (e *WriteError) Error() string {
 | 
						|
	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
 | 
						|
}
 | 
						|
 | 
						|
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
 | 
						|
// to switch to a new underlying Reader. This permits reusing a ReadCloser
 | 
						|
// instead of allocating a new one.
 | 
						|
type Resetter interface {
 | 
						|
	// Reset discards any buffered data and resets the Resetter as if it was
 | 
						|
	// newly initialized with the given reader.
 | 
						|
	Reset(r io.Reader, dict []byte) error
 | 
						|
}
 | 
						|
 | 
						|
// The data structure for decoding Huffman tables is based on that of
 | 
						|
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
 | 
						|
// For codes smaller than the table width, there are multiple entries
 | 
						|
// (each combination of trailing bits has the same value). For codes
 | 
						|
// larger than the table width, the table contains a link to an overflow
 | 
						|
// table. The width of each entry in the link table is the maximum code
 | 
						|
// size minus the chunk width.
 | 
						|
//
 | 
						|
// Note that you can do a lookup in the table even without all bits
 | 
						|
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
 | 
						|
// have the property that shorter codes come before longer ones, the
 | 
						|
// bit length estimate in the result is a lower bound on the actual
 | 
						|
// number of bits.
 | 
						|
//
 | 
						|
// See the following:
 | 
						|
//	http://www.gzip.org/algorithm.txt
 | 
						|
 | 
						|
// chunk & 15 is number of bits
 | 
						|
// chunk >> 4 is value, including table link
 | 
						|
 | 
						|
const (
 | 
						|
	huffmanChunkBits  = 9
 | 
						|
	huffmanNumChunks  = 1 << huffmanChunkBits
 | 
						|
	huffmanCountMask  = 15
 | 
						|
	huffmanValueShift = 4
 | 
						|
)
 | 
						|
 | 
						|
type huffmanDecoder struct {
 | 
						|
	maxRead  int                       // the maximum number of bits we can read and not overread
 | 
						|
	chunks   *[huffmanNumChunks]uint16 // chunks as described above
 | 
						|
	links    [][]uint16                // overflow links
 | 
						|
	linkMask uint32                    // mask the width of the link table
 | 
						|
}
 | 
						|
 | 
						|
// Initialize Huffman decoding tables from array of code lengths.
 | 
						|
// Following this function, h is guaranteed to be initialized into a complete
 | 
						|
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
 | 
						|
// degenerate case where the tree has only a single symbol with length 1. Empty
 | 
						|
// trees are permitted.
 | 
						|
func (h *huffmanDecoder) init(lengths []int) bool {
 | 
						|
	// Sanity enables additional runtime tests during Huffman
 | 
						|
	// table construction. It's intended to be used during
 | 
						|
	// development to supplement the currently ad-hoc unit tests.
 | 
						|
	const sanity = false
 | 
						|
 | 
						|
	if h.chunks == nil {
 | 
						|
		h.chunks = &[huffmanNumChunks]uint16{}
 | 
						|
	}
 | 
						|
	if h.maxRead != 0 {
 | 
						|
		*h = huffmanDecoder{chunks: h.chunks, links: h.links}
 | 
						|
	}
 | 
						|
 | 
						|
	// Count number of codes of each length,
 | 
						|
	// compute maxRead and max length.
 | 
						|
	var count [maxCodeLen]int
 | 
						|
	var min, max int
 | 
						|
	for _, n := range lengths {
 | 
						|
		if n == 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if min == 0 || n < min {
 | 
						|
			min = n
 | 
						|
		}
 | 
						|
		if n > max {
 | 
						|
			max = n
 | 
						|
		}
 | 
						|
		count[n&maxCodeLenMask]++
 | 
						|
	}
 | 
						|
 | 
						|
	// Empty tree. The decompressor.huffSym function will fail later if the tree
 | 
						|
	// is used. Technically, an empty tree is only valid for the HDIST tree and
 | 
						|
	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
 | 
						|
	// is guaranteed to fail since it will attempt to use the tree to decode the
 | 
						|
	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
 | 
						|
	// guaranteed to fail later since the compressed data section must be
 | 
						|
	// composed of at least one symbol (the end-of-block marker).
 | 
						|
	if max == 0 {
 | 
						|
		return true
 | 
						|
	}
 | 
						|
 | 
						|
	code := 0
 | 
						|
	var nextcode [maxCodeLen]int
 | 
						|
	for i := min; i <= max; i++ {
 | 
						|
		code <<= 1
 | 
						|
		nextcode[i&maxCodeLenMask] = code
 | 
						|
		code += count[i&maxCodeLenMask]
 | 
						|
	}
 | 
						|
 | 
						|
	// Check that the coding is complete (i.e., that we've
 | 
						|
	// assigned all 2-to-the-max possible bit sequences).
 | 
						|
	// Exception: To be compatible with zlib, we also need to
 | 
						|
	// accept degenerate single-code codings. See also
 | 
						|
	// TestDegenerateHuffmanCoding.
 | 
						|
	if code != 1<<uint(max) && !(code == 1 && max == 1) {
 | 
						|
		if debugDecode {
 | 
						|
			fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
 | 
						|
		}
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	h.maxRead = min
 | 
						|
	chunks := h.chunks[:]
 | 
						|
	for i := range chunks {
 | 
						|
		chunks[i] = 0
 | 
						|
	}
 | 
						|
 | 
						|
	if max > huffmanChunkBits {
 | 
						|
		numLinks := 1 << (uint(max) - huffmanChunkBits)
 | 
						|
		h.linkMask = uint32(numLinks - 1)
 | 
						|
 | 
						|
		// create link tables
 | 
						|
		link := nextcode[huffmanChunkBits+1] >> 1
 | 
						|
		if cap(h.links) < huffmanNumChunks-link {
 | 
						|
			h.links = make([][]uint16, huffmanNumChunks-link)
 | 
						|
		} else {
 | 
						|
			h.links = h.links[:huffmanNumChunks-link]
 | 
						|
		}
 | 
						|
		for j := uint(link); j < huffmanNumChunks; j++ {
 | 
						|
			reverse := int(bits.Reverse16(uint16(j)))
 | 
						|
			reverse >>= uint(16 - huffmanChunkBits)
 | 
						|
			off := j - uint(link)
 | 
						|
			if sanity && h.chunks[reverse] != 0 {
 | 
						|
				panic("impossible: overwriting existing chunk")
 | 
						|
			}
 | 
						|
			h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
 | 
						|
			if cap(h.links[off]) < numLinks {
 | 
						|
				h.links[off] = make([]uint16, numLinks)
 | 
						|
			} else {
 | 
						|
				links := h.links[off][:0]
 | 
						|
				h.links[off] = links[:numLinks]
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		h.links = h.links[:0]
 | 
						|
	}
 | 
						|
 | 
						|
	for i, n := range lengths {
 | 
						|
		if n == 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		code := nextcode[n]
 | 
						|
		nextcode[n]++
 | 
						|
		chunk := uint16(i<<huffmanValueShift | n)
 | 
						|
		reverse := int(bits.Reverse16(uint16(code)))
 | 
						|
		reverse >>= uint(16 - n)
 | 
						|
		if n <= huffmanChunkBits {
 | 
						|
			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
 | 
						|
				// We should never need to overwrite
 | 
						|
				// an existing chunk. Also, 0 is
 | 
						|
				// never a valid chunk, because the
 | 
						|
				// lower 4 "count" bits should be
 | 
						|
				// between 1 and 15.
 | 
						|
				if sanity && h.chunks[off] != 0 {
 | 
						|
					panic("impossible: overwriting existing chunk")
 | 
						|
				}
 | 
						|
				h.chunks[off] = chunk
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			j := reverse & (huffmanNumChunks - 1)
 | 
						|
			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
 | 
						|
				// Longer codes should have been
 | 
						|
				// associated with a link table above.
 | 
						|
				panic("impossible: not an indirect chunk")
 | 
						|
			}
 | 
						|
			value := h.chunks[j] >> huffmanValueShift
 | 
						|
			linktab := h.links[value]
 | 
						|
			reverse >>= huffmanChunkBits
 | 
						|
			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
 | 
						|
				if sanity && linktab[off] != 0 {
 | 
						|
					panic("impossible: overwriting existing chunk")
 | 
						|
				}
 | 
						|
				linktab[off] = chunk
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if sanity {
 | 
						|
		// Above we've sanity checked that we never overwrote
 | 
						|
		// an existing entry. Here we additionally check that
 | 
						|
		// we filled the tables completely.
 | 
						|
		for i, chunk := range h.chunks {
 | 
						|
			if chunk == 0 {
 | 
						|
				// As an exception, in the degenerate
 | 
						|
				// single-code case, we allow odd
 | 
						|
				// chunks to be missing.
 | 
						|
				if code == 1 && i%2 == 1 {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				panic("impossible: missing chunk")
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for _, linktab := range h.links {
 | 
						|
			for _, chunk := range linktab {
 | 
						|
				if chunk == 0 {
 | 
						|
					panic("impossible: missing chunk")
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// The actual read interface needed by NewReader.
 | 
						|
// If the passed in io.Reader does not also have ReadByte,
 | 
						|
// the NewReader will introduce its own buffering.
 | 
						|
type Reader interface {
 | 
						|
	io.Reader
 | 
						|
	io.ByteReader
 | 
						|
}
 | 
						|
 | 
						|
// Decompress state.
 | 
						|
type decompressor struct {
 | 
						|
	// Input source.
 | 
						|
	r       Reader
 | 
						|
	roffset int64
 | 
						|
 | 
						|
	// Huffman decoders for literal/length, distance.
 | 
						|
	h1, h2 huffmanDecoder
 | 
						|
 | 
						|
	// Length arrays used to define Huffman codes.
 | 
						|
	bits     *[maxNumLit + maxNumDist]int
 | 
						|
	codebits *[numCodes]int
 | 
						|
 | 
						|
	// Output history, buffer.
 | 
						|
	dict dictDecoder
 | 
						|
 | 
						|
	// Next step in the decompression,
 | 
						|
	// and decompression state.
 | 
						|
	step      func(*decompressor)
 | 
						|
	stepState int
 | 
						|
	err       error
 | 
						|
	toRead    []byte
 | 
						|
	hl, hd    *huffmanDecoder
 | 
						|
	copyLen   int
 | 
						|
	copyDist  int
 | 
						|
 | 
						|
	// Temporary buffer (avoids repeated allocation).
 | 
						|
	buf [4]byte
 | 
						|
 | 
						|
	// Input bits, in top of b.
 | 
						|
	b uint32
 | 
						|
 | 
						|
	nb    uint
 | 
						|
	final bool
 | 
						|
}
 | 
						|
 | 
						|
func (f *decompressor) nextBlock() {
 | 
						|
	for f.nb < 1+2 {
 | 
						|
		if f.err = f.moreBits(); f.err != nil {
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
	f.final = f.b&1 == 1
 | 
						|
	f.b >>= 1
 | 
						|
	typ := f.b & 3
 | 
						|
	f.b >>= 2
 | 
						|
	f.nb -= 1 + 2
 | 
						|
	switch typ {
 | 
						|
	case 0:
 | 
						|
		f.dataBlock()
 | 
						|
	case 1:
 | 
						|
		// compressed, fixed Huffman tables
 | 
						|
		f.hl = &fixedHuffmanDecoder
 | 
						|
		f.hd = nil
 | 
						|
		f.huffmanBlockDecoder()()
 | 
						|
	case 2:
 | 
						|
		// compressed, dynamic Huffman tables
 | 
						|
		if f.err = f.readHuffman(); f.err != nil {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		f.hl = &f.h1
 | 
						|
		f.hd = &f.h2
 | 
						|
		f.huffmanBlockDecoder()()
 | 
						|
	default:
 | 
						|
		// 3 is reserved.
 | 
						|
		if debugDecode {
 | 
						|
			fmt.Println("reserved data block encountered")
 | 
						|
		}
 | 
						|
		f.err = CorruptInputError(f.roffset)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (f *decompressor) Read(b []byte) (int, error) {
 | 
						|
	for {
 | 
						|
		if len(f.toRead) > 0 {
 | 
						|
			n := copy(b, f.toRead)
 | 
						|
			f.toRead = f.toRead[n:]
 | 
						|
			if len(f.toRead) == 0 {
 | 
						|
				return n, f.err
 | 
						|
			}
 | 
						|
			return n, nil
 | 
						|
		}
 | 
						|
		if f.err != nil {
 | 
						|
			return 0, f.err
 | 
						|
		}
 | 
						|
		f.step(f)
 | 
						|
		if f.err != nil && len(f.toRead) == 0 {
 | 
						|
			f.toRead = f.dict.readFlush() // Flush what's left in case of error
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Support the io.WriteTo interface for io.Copy and friends.
 | 
						|
func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
 | 
						|
	total := int64(0)
 | 
						|
	flushed := false
 | 
						|
	for {
 | 
						|
		if len(f.toRead) > 0 {
 | 
						|
			n, err := w.Write(f.toRead)
 | 
						|
			total += int64(n)
 | 
						|
			if err != nil {
 | 
						|
				f.err = err
 | 
						|
				return total, err
 | 
						|
			}
 | 
						|
			if n != len(f.toRead) {
 | 
						|
				return total, io.ErrShortWrite
 | 
						|
			}
 | 
						|
			f.toRead = f.toRead[:0]
 | 
						|
		}
 | 
						|
		if f.err != nil && flushed {
 | 
						|
			if f.err == io.EOF {
 | 
						|
				return total, nil
 | 
						|
			}
 | 
						|
			return total, f.err
 | 
						|
		}
 | 
						|
		if f.err == nil {
 | 
						|
			f.step(f)
 | 
						|
		}
 | 
						|
		if len(f.toRead) == 0 && f.err != nil && !flushed {
 | 
						|
			f.toRead = f.dict.readFlush() // Flush what's left in case of error
 | 
						|
			flushed = true
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (f *decompressor) Close() error {
 | 
						|
	if f.err == io.EOF {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return f.err
 | 
						|
}
 | 
						|
 | 
						|
// RFC 1951 section 3.2.7.
 | 
						|
// Compression with dynamic Huffman codes
 | 
						|
 | 
						|
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
 | 
						|
 | 
						|
func (f *decompressor) readHuffman() error {
 | 
						|
	// HLIT[5], HDIST[5], HCLEN[4].
 | 
						|
	for f.nb < 5+5+4 {
 | 
						|
		if err := f.moreBits(); err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
	}
 | 
						|
	nlit := int(f.b&0x1F) + 257
 | 
						|
	if nlit > maxNumLit {
 | 
						|
		if debugDecode {
 | 
						|
			fmt.Println("nlit > maxNumLit", nlit)
 | 
						|
		}
 | 
						|
		return CorruptInputError(f.roffset)
 | 
						|
	}
 | 
						|
	f.b >>= 5
 | 
						|
	ndist := int(f.b&0x1F) + 1
 | 
						|
	if ndist > maxNumDist {
 | 
						|
		if debugDecode {
 | 
						|
			fmt.Println("ndist > maxNumDist", ndist)
 | 
						|
		}
 | 
						|
		return CorruptInputError(f.roffset)
 | 
						|
	}
 | 
						|
	f.b >>= 5
 | 
						|
	nclen := int(f.b&0xF) + 4
 | 
						|
	// numCodes is 19, so nclen is always valid.
 | 
						|
	f.b >>= 4
 | 
						|
	f.nb -= 5 + 5 + 4
 | 
						|
 | 
						|
	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
 | 
						|
	for i := 0; i < nclen; i++ {
 | 
						|
		for f.nb < 3 {
 | 
						|
			if err := f.moreBits(); err != nil {
 | 
						|
				return err
 | 
						|
			}
 | 
						|
		}
 | 
						|
		f.codebits[codeOrder[i]] = int(f.b & 0x7)
 | 
						|
		f.b >>= 3
 | 
						|
		f.nb -= 3
 | 
						|
	}
 | 
						|
	for i := nclen; i < len(codeOrder); i++ {
 | 
						|
		f.codebits[codeOrder[i]] = 0
 | 
						|
	}
 | 
						|
	if !f.h1.init(f.codebits[0:]) {
 | 
						|
		if debugDecode {
 | 
						|
			fmt.Println("init codebits failed")
 | 
						|
		}
 | 
						|
		return CorruptInputError(f.roffset)
 | 
						|
	}
 | 
						|
 | 
						|
	// HLIT + 257 code lengths, HDIST + 1 code lengths,
 | 
						|
	// using the code length Huffman code.
 | 
						|
	for i, n := 0, nlit+ndist; i < n; {
 | 
						|
		x, err := f.huffSym(&f.h1)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
		if x < 16 {
 | 
						|
			// Actual length.
 | 
						|
			f.bits[i] = x
 | 
						|
			i++
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		// Repeat previous length or zero.
 | 
						|
		var rep int
 | 
						|
		var nb uint
 | 
						|
		var b int
 | 
						|
		switch x {
 | 
						|
		default:
 | 
						|
			return InternalError("unexpected length code")
 | 
						|
		case 16:
 | 
						|
			rep = 3
 | 
						|
			nb = 2
 | 
						|
			if i == 0 {
 | 
						|
				if debugDecode {
 | 
						|
					fmt.Println("i==0")
 | 
						|
				}
 | 
						|
				return CorruptInputError(f.roffset)
 | 
						|
			}
 | 
						|
			b = f.bits[i-1]
 | 
						|
		case 17:
 | 
						|
			rep = 3
 | 
						|
			nb = 3
 | 
						|
			b = 0
 | 
						|
		case 18:
 | 
						|
			rep = 11
 | 
						|
			nb = 7
 | 
						|
			b = 0
 | 
						|
		}
 | 
						|
		for f.nb < nb {
 | 
						|
			if err := f.moreBits(); err != nil {
 | 
						|
				if debugDecode {
 | 
						|
					fmt.Println("morebits:", err)
 | 
						|
				}
 | 
						|
				return err
 | 
						|
			}
 | 
						|
		}
 | 
						|
		rep += int(f.b & uint32(1<<(nb®SizeMaskUint32)-1))
 | 
						|
		f.b >>= nb & regSizeMaskUint32
 | 
						|
		f.nb -= nb
 | 
						|
		if i+rep > n {
 | 
						|
			if debugDecode {
 | 
						|
				fmt.Println("i+rep > n", i, rep, n)
 | 
						|
			}
 | 
						|
			return CorruptInputError(f.roffset)
 | 
						|
		}
 | 
						|
		for j := 0; j < rep; j++ {
 | 
						|
			f.bits[i] = b
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
 | 
						|
		if debugDecode {
 | 
						|
			fmt.Println("init2 failed")
 | 
						|
		}
 | 
						|
		return CorruptInputError(f.roffset)
 | 
						|
	}
 | 
						|
 | 
						|
	// As an optimization, we can initialize the maxRead bits to read at a time
 | 
						|
	// for the HLIT tree to the length of the EOB marker since we know that
 | 
						|
	// every block must terminate with one. This preserves the property that
 | 
						|
	// we never read any extra bytes after the end of the DEFLATE stream.
 | 
						|
	if f.h1.maxRead < f.bits[endBlockMarker] {
 | 
						|
		f.h1.maxRead = f.bits[endBlockMarker]
 | 
						|
	}
 | 
						|
	if !f.final {
 | 
						|
		// If not the final block, the smallest block possible is
 | 
						|
		// a predefined table, BTYPE=01, with a single EOB marker.
 | 
						|
		// This will take up 3 + 7 bits.
 | 
						|
		f.h1.maxRead += 10
 | 
						|
	}
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// Decode a single Huffman block from f.
 | 
						|
// hl and hd are the Huffman states for the lit/length values
 | 
						|
// and the distance values, respectively. If hd == nil, using the
 | 
						|
// fixed distance encoding associated with fixed Huffman blocks.
 | 
						|
func (f *decompressor) huffmanBlockGeneric() {
 | 
						|
	const (
 | 
						|
		stateInit = iota // Zero value must be stateInit
 | 
						|
		stateDict
 | 
						|
	)
 | 
						|
 | 
						|
	switch f.stepState {
 | 
						|
	case stateInit:
 | 
						|
		goto readLiteral
 | 
						|
	case stateDict:
 | 
						|
		goto copyHistory
 | 
						|
	}
 | 
						|
 | 
						|
readLiteral:
 | 
						|
	// Read literal and/or (length, distance) according to RFC section 3.2.3.
 | 
						|
	{
 | 
						|
		var v int
 | 
						|
		{
 | 
						|
			// Inlined v, err := f.huffSym(f.hl)
 | 
						|
			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
 | 
						|
			// with single element, huffSym must error on these two edge cases. In both
 | 
						|
			// cases, the chunks slice will be 0 for the invalid sequence, leading it
 | 
						|
			// satisfy the n == 0 check below.
 | 
						|
			n := uint(f.hl.maxRead)
 | 
						|
			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
 | 
						|
			// but is smart enough to keep local variables in registers, so use nb and b,
 | 
						|
			// inline call to moreBits and reassign b,nb back to f on return.
 | 
						|
			nb, b := f.nb, f.b
 | 
						|
			for {
 | 
						|
				for nb < n {
 | 
						|
					c, err := f.r.ReadByte()
 | 
						|
					if err != nil {
 | 
						|
						f.b = b
 | 
						|
						f.nb = nb
 | 
						|
						f.err = noEOF(err)
 | 
						|
						return
 | 
						|
					}
 | 
						|
					f.roffset++
 | 
						|
					b |= uint32(c) << (nb & regSizeMaskUint32)
 | 
						|
					nb += 8
 | 
						|
				}
 | 
						|
				chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
 | 
						|
				n = uint(chunk & huffmanCountMask)
 | 
						|
				if n > huffmanChunkBits {
 | 
						|
					chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
 | 
						|
					n = uint(chunk & huffmanCountMask)
 | 
						|
				}
 | 
						|
				if n <= nb {
 | 
						|
					if n == 0 {
 | 
						|
						f.b = b
 | 
						|
						f.nb = nb
 | 
						|
						if debugDecode {
 | 
						|
							fmt.Println("huffsym: n==0")
 | 
						|
						}
 | 
						|
						f.err = CorruptInputError(f.roffset)
 | 
						|
						return
 | 
						|
					}
 | 
						|
					f.b = b >> (n & regSizeMaskUint32)
 | 
						|
					f.nb = nb - n
 | 
						|
					v = int(chunk >> huffmanValueShift)
 | 
						|
					break
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		var n uint // number of bits extra
 | 
						|
		var length int
 | 
						|
		var err error
 | 
						|
		switch {
 | 
						|
		case v < 256:
 | 
						|
			f.dict.writeByte(byte(v))
 | 
						|
			if f.dict.availWrite() == 0 {
 | 
						|
				f.toRead = f.dict.readFlush()
 | 
						|
				f.step = (*decompressor).huffmanBlockGeneric
 | 
						|
				f.stepState = stateInit
 | 
						|
				return
 | 
						|
			}
 | 
						|
			goto readLiteral
 | 
						|
		case v == 256:
 | 
						|
			f.finishBlock()
 | 
						|
			return
 | 
						|
		// otherwise, reference to older data
 | 
						|
		case v < 265:
 | 
						|
			length = v - (257 - 3)
 | 
						|
			n = 0
 | 
						|
		case v < 269:
 | 
						|
			length = v*2 - (265*2 - 11)
 | 
						|
			n = 1
 | 
						|
		case v < 273:
 | 
						|
			length = v*4 - (269*4 - 19)
 | 
						|
			n = 2
 | 
						|
		case v < 277:
 | 
						|
			length = v*8 - (273*8 - 35)
 | 
						|
			n = 3
 | 
						|
		case v < 281:
 | 
						|
			length = v*16 - (277*16 - 67)
 | 
						|
			n = 4
 | 
						|
		case v < 285:
 | 
						|
			length = v*32 - (281*32 - 131)
 | 
						|
			n = 5
 | 
						|
		case v < maxNumLit:
 | 
						|
			length = 258
 | 
						|
			n = 0
 | 
						|
		default:
 | 
						|
			if debugDecode {
 | 
						|
				fmt.Println(v, ">= maxNumLit")
 | 
						|
			}
 | 
						|
			f.err = CorruptInputError(f.roffset)
 | 
						|
			return
 | 
						|
		}
 | 
						|
		if n > 0 {
 | 
						|
			for f.nb < n {
 | 
						|
				if err = f.moreBits(); err != nil {
 | 
						|
					if debugDecode {
 | 
						|
						fmt.Println("morebits n>0:", err)
 | 
						|
					}
 | 
						|
					f.err = err
 | 
						|
					return
 | 
						|
				}
 | 
						|
			}
 | 
						|
			length += int(f.b & uint32(1<<(n®SizeMaskUint32)-1))
 | 
						|
			f.b >>= n & regSizeMaskUint32
 | 
						|
			f.nb -= n
 | 
						|
		}
 | 
						|
 | 
						|
		var dist uint32
 | 
						|
		if f.hd == nil {
 | 
						|
			for f.nb < 5 {
 | 
						|
				if err = f.moreBits(); err != nil {
 | 
						|
					if debugDecode {
 | 
						|
						fmt.Println("morebits f.nb<5:", err)
 | 
						|
					}
 | 
						|
					f.err = err
 | 
						|
					return
 | 
						|
				}
 | 
						|
			}
 | 
						|
			dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
 | 
						|
			f.b >>= 5
 | 
						|
			f.nb -= 5
 | 
						|
		} else {
 | 
						|
			sym, err := f.huffSym(f.hd)
 | 
						|
			if err != nil {
 | 
						|
				if debugDecode {
 | 
						|
					fmt.Println("huffsym:", err)
 | 
						|
				}
 | 
						|
				f.err = err
 | 
						|
				return
 | 
						|
			}
 | 
						|
			dist = uint32(sym)
 | 
						|
		}
 | 
						|
 | 
						|
		switch {
 | 
						|
		case dist < 4:
 | 
						|
			dist++
 | 
						|
		case dist < maxNumDist:
 | 
						|
			nb := uint(dist-2) >> 1
 | 
						|
			// have 1 bit in bottom of dist, need nb more.
 | 
						|
			extra := (dist & 1) << (nb & regSizeMaskUint32)
 | 
						|
			for f.nb < nb {
 | 
						|
				if err = f.moreBits(); err != nil {
 | 
						|
					if debugDecode {
 | 
						|
						fmt.Println("morebits f.nb<nb:", err)
 | 
						|
					}
 | 
						|
					f.err = err
 | 
						|
					return
 | 
						|
				}
 | 
						|
			}
 | 
						|
			extra |= f.b & uint32(1<<(nb®SizeMaskUint32)-1)
 | 
						|
			f.b >>= nb & regSizeMaskUint32
 | 
						|
			f.nb -= nb
 | 
						|
			dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra
 | 
						|
		default:
 | 
						|
			if debugDecode {
 | 
						|
				fmt.Println("dist too big:", dist, maxNumDist)
 | 
						|
			}
 | 
						|
			f.err = CorruptInputError(f.roffset)
 | 
						|
			return
 | 
						|
		}
 | 
						|
 | 
						|
		// No check on length; encoding can be prescient.
 | 
						|
		if dist > uint32(f.dict.histSize()) {
 | 
						|
			if debugDecode {
 | 
						|
				fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
 | 
						|
			}
 | 
						|
			f.err = CorruptInputError(f.roffset)
 | 
						|
			return
 | 
						|
		}
 | 
						|
 | 
						|
		f.copyLen, f.copyDist = length, int(dist)
 | 
						|
		goto copyHistory
 | 
						|
	}
 | 
						|
 | 
						|
copyHistory:
 | 
						|
	// Perform a backwards copy according to RFC section 3.2.3.
 | 
						|
	{
 | 
						|
		cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
 | 
						|
		if cnt == 0 {
 | 
						|
			cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
 | 
						|
		}
 | 
						|
		f.copyLen -= cnt
 | 
						|
 | 
						|
		if f.dict.availWrite() == 0 || f.copyLen > 0 {
 | 
						|
			f.toRead = f.dict.readFlush()
 | 
						|
			f.step = (*decompressor).huffmanBlockGeneric // We need to continue this work
 | 
						|
			f.stepState = stateDict
 | 
						|
			return
 | 
						|
		}
 | 
						|
		goto readLiteral
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Copy a single uncompressed data block from input to output.
 | 
						|
func (f *decompressor) dataBlock() {
 | 
						|
	// Uncompressed.
 | 
						|
	// Discard current half-byte.
 | 
						|
	left := (f.nb) & 7
 | 
						|
	f.nb -= left
 | 
						|
	f.b >>= left
 | 
						|
 | 
						|
	offBytes := f.nb >> 3
 | 
						|
	// Unfilled values will be overwritten.
 | 
						|
	f.buf[0] = uint8(f.b)
 | 
						|
	f.buf[1] = uint8(f.b >> 8)
 | 
						|
	f.buf[2] = uint8(f.b >> 16)
 | 
						|
	f.buf[3] = uint8(f.b >> 24)
 | 
						|
 | 
						|
	f.roffset += int64(offBytes)
 | 
						|
	f.nb, f.b = 0, 0
 | 
						|
 | 
						|
	// Length then ones-complement of length.
 | 
						|
	nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
 | 
						|
	f.roffset += int64(nr)
 | 
						|
	if err != nil {
 | 
						|
		f.err = noEOF(err)
 | 
						|
		return
 | 
						|
	}
 | 
						|
	n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
 | 
						|
	nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
 | 
						|
	if nn != ^n {
 | 
						|
		if debugDecode {
 | 
						|
			ncomp := ^n
 | 
						|
			fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
 | 
						|
		}
 | 
						|
		f.err = CorruptInputError(f.roffset)
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if n == 0 {
 | 
						|
		f.toRead = f.dict.readFlush()
 | 
						|
		f.finishBlock()
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	f.copyLen = int(n)
 | 
						|
	f.copyData()
 | 
						|
}
 | 
						|
 | 
						|
// copyData copies f.copyLen bytes from the underlying reader into f.hist.
 | 
						|
// It pauses for reads when f.hist is full.
 | 
						|
func (f *decompressor) copyData() {
 | 
						|
	buf := f.dict.writeSlice()
 | 
						|
	if len(buf) > f.copyLen {
 | 
						|
		buf = buf[:f.copyLen]
 | 
						|
	}
 | 
						|
 | 
						|
	cnt, err := io.ReadFull(f.r, buf)
 | 
						|
	f.roffset += int64(cnt)
 | 
						|
	f.copyLen -= cnt
 | 
						|
	f.dict.writeMark(cnt)
 | 
						|
	if err != nil {
 | 
						|
		f.err = noEOF(err)
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if f.dict.availWrite() == 0 || f.copyLen > 0 {
 | 
						|
		f.toRead = f.dict.readFlush()
 | 
						|
		f.step = (*decompressor).copyData
 | 
						|
		return
 | 
						|
	}
 | 
						|
	f.finishBlock()
 | 
						|
}
 | 
						|
 | 
						|
func (f *decompressor) finishBlock() {
 | 
						|
	if f.final {
 | 
						|
		if f.dict.availRead() > 0 {
 | 
						|
			f.toRead = f.dict.readFlush()
 | 
						|
		}
 | 
						|
		f.err = io.EOF
 | 
						|
	}
 | 
						|
	f.step = (*decompressor).nextBlock
 | 
						|
}
 | 
						|
 | 
						|
// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
 | 
						|
func noEOF(e error) error {
 | 
						|
	if e == io.EOF {
 | 
						|
		return io.ErrUnexpectedEOF
 | 
						|
	}
 | 
						|
	return e
 | 
						|
}
 | 
						|
 | 
						|
func (f *decompressor) moreBits() error {
 | 
						|
	c, err := f.r.ReadByte()
 | 
						|
	if err != nil {
 | 
						|
		return noEOF(err)
 | 
						|
	}
 | 
						|
	f.roffset++
 | 
						|
	f.b |= uint32(c) << (f.nb & regSizeMaskUint32)
 | 
						|
	f.nb += 8
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// Read the next Huffman-encoded symbol from f according to h.
 | 
						|
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
 | 
						|
	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
 | 
						|
	// with single element, huffSym must error on these two edge cases. In both
 | 
						|
	// cases, the chunks slice will be 0 for the invalid sequence, leading it
 | 
						|
	// satisfy the n == 0 check below.
 | 
						|
	n := uint(h.maxRead)
 | 
						|
	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
 | 
						|
	// but is smart enough to keep local variables in registers, so use nb and b,
 | 
						|
	// inline call to moreBits and reassign b,nb back to f on return.
 | 
						|
	nb, b := f.nb, f.b
 | 
						|
	for {
 | 
						|
		for nb < n {
 | 
						|
			c, err := f.r.ReadByte()
 | 
						|
			if err != nil {
 | 
						|
				f.b = b
 | 
						|
				f.nb = nb
 | 
						|
				return 0, noEOF(err)
 | 
						|
			}
 | 
						|
			f.roffset++
 | 
						|
			b |= uint32(c) << (nb & regSizeMaskUint32)
 | 
						|
			nb += 8
 | 
						|
		}
 | 
						|
		chunk := h.chunks[b&(huffmanNumChunks-1)]
 | 
						|
		n = uint(chunk & huffmanCountMask)
 | 
						|
		if n > huffmanChunkBits {
 | 
						|
			chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
 | 
						|
			n = uint(chunk & huffmanCountMask)
 | 
						|
		}
 | 
						|
		if n <= nb {
 | 
						|
			if n == 0 {
 | 
						|
				f.b = b
 | 
						|
				f.nb = nb
 | 
						|
				if debugDecode {
 | 
						|
					fmt.Println("huffsym: n==0")
 | 
						|
				}
 | 
						|
				f.err = CorruptInputError(f.roffset)
 | 
						|
				return 0, f.err
 | 
						|
			}
 | 
						|
			f.b = b >> (n & regSizeMaskUint32)
 | 
						|
			f.nb = nb - n
 | 
						|
			return int(chunk >> huffmanValueShift), nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func makeReader(r io.Reader) Reader {
 | 
						|
	if rr, ok := r.(Reader); ok {
 | 
						|
		return rr
 | 
						|
	}
 | 
						|
	return bufio.NewReader(r)
 | 
						|
}
 | 
						|
 | 
						|
func fixedHuffmanDecoderInit() {
 | 
						|
	fixedOnce.Do(func() {
 | 
						|
		// These come from the RFC section 3.2.6.
 | 
						|
		var bits [288]int
 | 
						|
		for i := 0; i < 144; i++ {
 | 
						|
			bits[i] = 8
 | 
						|
		}
 | 
						|
		for i := 144; i < 256; i++ {
 | 
						|
			bits[i] = 9
 | 
						|
		}
 | 
						|
		for i := 256; i < 280; i++ {
 | 
						|
			bits[i] = 7
 | 
						|
		}
 | 
						|
		for i := 280; i < 288; i++ {
 | 
						|
			bits[i] = 8
 | 
						|
		}
 | 
						|
		fixedHuffmanDecoder.init(bits[:])
 | 
						|
	})
 | 
						|
}
 | 
						|
 | 
						|
func (f *decompressor) Reset(r io.Reader, dict []byte) error {
 | 
						|
	*f = decompressor{
 | 
						|
		r:        makeReader(r),
 | 
						|
		bits:     f.bits,
 | 
						|
		codebits: f.codebits,
 | 
						|
		h1:       f.h1,
 | 
						|
		h2:       f.h2,
 | 
						|
		dict:     f.dict,
 | 
						|
		step:     (*decompressor).nextBlock,
 | 
						|
	}
 | 
						|
	f.dict.init(maxMatchOffset, dict)
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// NewReader returns a new ReadCloser that can be used
 | 
						|
// to read the uncompressed version of r.
 | 
						|
// If r does not also implement io.ByteReader,
 | 
						|
// the decompressor may read more data than necessary from r.
 | 
						|
// It is the caller's responsibility to call Close on the ReadCloser
 | 
						|
// when finished reading.
 | 
						|
//
 | 
						|
// The ReadCloser returned by NewReader also implements Resetter.
 | 
						|
func NewReader(r io.Reader) io.ReadCloser {
 | 
						|
	fixedHuffmanDecoderInit()
 | 
						|
 | 
						|
	var f decompressor
 | 
						|
	f.r = makeReader(r)
 | 
						|
	f.bits = new([maxNumLit + maxNumDist]int)
 | 
						|
	f.codebits = new([numCodes]int)
 | 
						|
	f.step = (*decompressor).nextBlock
 | 
						|
	f.dict.init(maxMatchOffset, nil)
 | 
						|
	return &f
 | 
						|
}
 | 
						|
 | 
						|
// NewReaderDict is like NewReader but initializes the reader
 | 
						|
// with a preset dictionary. The returned Reader behaves as if
 | 
						|
// the uncompressed data stream started with the given dictionary,
 | 
						|
// which has already been read. NewReaderDict is typically used
 | 
						|
// to read data compressed by NewWriterDict.
 | 
						|
//
 | 
						|
// The ReadCloser returned by NewReader also implements Resetter.
 | 
						|
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
 | 
						|
	fixedHuffmanDecoderInit()
 | 
						|
 | 
						|
	var f decompressor
 | 
						|
	f.r = makeReader(r)
 | 
						|
	f.bits = new([maxNumLit + maxNumDist]int)
 | 
						|
	f.codebits = new([numCodes]int)
 | 
						|
	f.step = (*decompressor).nextBlock
 | 
						|
	f.dict.init(maxMatchOffset, dict)
 | 
						|
	return &f
 | 
						|
}
 |