669 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			669 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package internal
 | |
| 
 | |
| // An extFloat represents an extended floating-point number, with more
 | |
| // precision than a float64. It does not try to save bits: the
 | |
| // number represented by the structure is mant*(2^exp), with a negative
 | |
| // sign if neg is true.
 | |
| type extFloat struct {
 | |
| 	mant uint64
 | |
| 	exp  int
 | |
| 	neg  bool
 | |
| }
 | |
| 
 | |
| // Powers of ten taken from double-conversion library.
 | |
| // http://code.google.com/p/double-conversion/
 | |
| const (
 | |
| 	firstPowerOfTen = -348
 | |
| 	stepPowerOfTen  = 8
 | |
| )
 | |
| 
 | |
| var smallPowersOfTen = [...]extFloat{
 | |
| 	{1 << 63, -63, false},        // 1
 | |
| 	{0xa << 60, -60, false},      // 1e1
 | |
| 	{0x64 << 57, -57, false},     // 1e2
 | |
| 	{0x3e8 << 54, -54, false},    // 1e3
 | |
| 	{0x2710 << 50, -50, false},   // 1e4
 | |
| 	{0x186a0 << 47, -47, false},  // 1e5
 | |
| 	{0xf4240 << 44, -44, false},  // 1e6
 | |
| 	{0x989680 << 40, -40, false}, // 1e7
 | |
| }
 | |
| 
 | |
| var powersOfTen = [...]extFloat{
 | |
| 	{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
 | |
| 	{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
 | |
| 	{0x8b16fb203055ac76, -1166, false}, // 10^-332
 | |
| 	{0xcf42894a5dce35ea, -1140, false}, // 10^-324
 | |
| 	{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
 | |
| 	{0xe61acf033d1a45df, -1087, false}, // 10^-308
 | |
| 	{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
 | |
| 	{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
 | |
| 	{0xbe5691ef416bd60c, -1007, false}, // 10^-284
 | |
| 	{0x8dd01fad907ffc3c, -980, false},  // 10^-276
 | |
| 	{0xd3515c2831559a83, -954, false},  // 10^-268
 | |
| 	{0x9d71ac8fada6c9b5, -927, false},  // 10^-260
 | |
| 	{0xea9c227723ee8bcb, -901, false},  // 10^-252
 | |
| 	{0xaecc49914078536d, -874, false},  // 10^-244
 | |
| 	{0x823c12795db6ce57, -847, false},  // 10^-236
 | |
| 	{0xc21094364dfb5637, -821, false},  // 10^-228
 | |
| 	{0x9096ea6f3848984f, -794, false},  // 10^-220
 | |
| 	{0xd77485cb25823ac7, -768, false},  // 10^-212
 | |
| 	{0xa086cfcd97bf97f4, -741, false},  // 10^-204
 | |
| 	{0xef340a98172aace5, -715, false},  // 10^-196
 | |
| 	{0xb23867fb2a35b28e, -688, false},  // 10^-188
 | |
| 	{0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
 | |
| 	{0xc5dd44271ad3cdba, -635, false},  // 10^-172
 | |
| 	{0x936b9fcebb25c996, -608, false},  // 10^-164
 | |
| 	{0xdbac6c247d62a584, -582, false},  // 10^-156
 | |
| 	{0xa3ab66580d5fdaf6, -555, false},  // 10^-148
 | |
| 	{0xf3e2f893dec3f126, -529, false},  // 10^-140
 | |
| 	{0xb5b5ada8aaff80b8, -502, false},  // 10^-132
 | |
| 	{0x87625f056c7c4a8b, -475, false},  // 10^-124
 | |
| 	{0xc9bcff6034c13053, -449, false},  // 10^-116
 | |
| 	{0x964e858c91ba2655, -422, false},  // 10^-108
 | |
| 	{0xdff9772470297ebd, -396, false},  // 10^-100
 | |
| 	{0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
 | |
| 	{0xf8a95fcf88747d94, -343, false},  // 10^-84
 | |
| 	{0xb94470938fa89bcf, -316, false},  // 10^-76
 | |
| 	{0x8a08f0f8bf0f156b, -289, false},  // 10^-68
 | |
| 	{0xcdb02555653131b6, -263, false},  // 10^-60
 | |
| 	{0x993fe2c6d07b7fac, -236, false},  // 10^-52
 | |
| 	{0xe45c10c42a2b3b06, -210, false},  // 10^-44
 | |
| 	{0xaa242499697392d3, -183, false},  // 10^-36
 | |
| 	{0xfd87b5f28300ca0e, -157, false},  // 10^-28
 | |
| 	{0xbce5086492111aeb, -130, false},  // 10^-20
 | |
| 	{0x8cbccc096f5088cc, -103, false},  // 10^-12
 | |
| 	{0xd1b71758e219652c, -77, false},   // 10^-4
 | |
| 	{0x9c40000000000000, -50, false},   // 10^4
 | |
| 	{0xe8d4a51000000000, -24, false},   // 10^12
 | |
| 	{0xad78ebc5ac620000, 3, false},     // 10^20
 | |
| 	{0x813f3978f8940984, 30, false},    // 10^28
 | |
| 	{0xc097ce7bc90715b3, 56, false},    // 10^36
 | |
| 	{0x8f7e32ce7bea5c70, 83, false},    // 10^44
 | |
| 	{0xd5d238a4abe98068, 109, false},   // 10^52
 | |
| 	{0x9f4f2726179a2245, 136, false},   // 10^60
 | |
| 	{0xed63a231d4c4fb27, 162, false},   // 10^68
 | |
| 	{0xb0de65388cc8ada8, 189, false},   // 10^76
 | |
| 	{0x83c7088e1aab65db, 216, false},   // 10^84
 | |
| 	{0xc45d1df942711d9a, 242, false},   // 10^92
 | |
| 	{0x924d692ca61be758, 269, false},   // 10^100
 | |
| 	{0xda01ee641a708dea, 295, false},   // 10^108
 | |
| 	{0xa26da3999aef774a, 322, false},   // 10^116
 | |
| 	{0xf209787bb47d6b85, 348, false},   // 10^124
 | |
| 	{0xb454e4a179dd1877, 375, false},   // 10^132
 | |
| 	{0x865b86925b9bc5c2, 402, false},   // 10^140
 | |
| 	{0xc83553c5c8965d3d, 428, false},   // 10^148
 | |
| 	{0x952ab45cfa97a0b3, 455, false},   // 10^156
 | |
| 	{0xde469fbd99a05fe3, 481, false},   // 10^164
 | |
| 	{0xa59bc234db398c25, 508, false},   // 10^172
 | |
| 	{0xf6c69a72a3989f5c, 534, false},   // 10^180
 | |
| 	{0xb7dcbf5354e9bece, 561, false},   // 10^188
 | |
| 	{0x88fcf317f22241e2, 588, false},   // 10^196
 | |
| 	{0xcc20ce9bd35c78a5, 614, false},   // 10^204
 | |
| 	{0x98165af37b2153df, 641, false},   // 10^212
 | |
| 	{0xe2a0b5dc971f303a, 667, false},   // 10^220
 | |
| 	{0xa8d9d1535ce3b396, 694, false},   // 10^228
 | |
| 	{0xfb9b7cd9a4a7443c, 720, false},   // 10^236
 | |
| 	{0xbb764c4ca7a44410, 747, false},   // 10^244
 | |
| 	{0x8bab8eefb6409c1a, 774, false},   // 10^252
 | |
| 	{0xd01fef10a657842c, 800, false},   // 10^260
 | |
| 	{0x9b10a4e5e9913129, 827, false},   // 10^268
 | |
| 	{0xe7109bfba19c0c9d, 853, false},   // 10^276
 | |
| 	{0xac2820d9623bf429, 880, false},   // 10^284
 | |
| 	{0x80444b5e7aa7cf85, 907, false},   // 10^292
 | |
| 	{0xbf21e44003acdd2d, 933, false},   // 10^300
 | |
| 	{0x8e679c2f5e44ff8f, 960, false},   // 10^308
 | |
| 	{0xd433179d9c8cb841, 986, false},   // 10^316
 | |
| 	{0x9e19db92b4e31ba9, 1013, false},  // 10^324
 | |
| 	{0xeb96bf6ebadf77d9, 1039, false},  // 10^332
 | |
| 	{0xaf87023b9bf0ee6b, 1066, false},  // 10^340
 | |
| }
 | |
| 
 | |
| // floatBits returns the bits of the float64 that best approximates
 | |
| // the extFloat passed as receiver. Overflow is set to true if
 | |
| // the resulting float64 is ±Inf.
 | |
| func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
 | |
| 	f.Normalize()
 | |
| 
 | |
| 	exp := f.exp + 63
 | |
| 
 | |
| 	// Exponent too small.
 | |
| 	if exp < flt.bias+1 {
 | |
| 		n := flt.bias + 1 - exp
 | |
| 		f.mant >>= uint(n)
 | |
| 		exp += n
 | |
| 	}
 | |
| 
 | |
| 	// Extract 1+flt.mantbits bits from the 64-bit mantissa.
 | |
| 	mant := f.mant >> (63 - flt.mantbits)
 | |
| 	if f.mant&(1<<(62-flt.mantbits)) != 0 {
 | |
| 		// Round up.
 | |
| 		mant += 1
 | |
| 	}
 | |
| 
 | |
| 	// Rounding might have added a bit; shift down.
 | |
| 	if mant == 2<<flt.mantbits {
 | |
| 		mant >>= 1
 | |
| 		exp++
 | |
| 	}
 | |
| 
 | |
| 	// Infinities.
 | |
| 	if exp-flt.bias >= 1<<flt.expbits-1 {
 | |
| 		// ±Inf
 | |
| 		mant = 0
 | |
| 		exp = 1<<flt.expbits - 1 + flt.bias
 | |
| 		overflow = true
 | |
| 	} else if mant&(1<<flt.mantbits) == 0 {
 | |
| 		// Denormalized?
 | |
| 		exp = flt.bias
 | |
| 	}
 | |
| 	// Assemble bits.
 | |
| 	bits = mant & (uint64(1)<<flt.mantbits - 1)
 | |
| 	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
 | |
| 	if f.neg {
 | |
| 		bits |= 1 << (flt.mantbits + flt.expbits)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // AssignComputeBounds sets f to the floating point value
 | |
| // defined by mant, exp and precision given by flt. It returns
 | |
| // lower, upper such that any number in the closed interval
 | |
| // [lower, upper] is converted back to the same floating point number.
 | |
| func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
 | |
| 	f.mant = mant
 | |
| 	f.exp = exp - int(flt.mantbits)
 | |
| 	f.neg = neg
 | |
| 	if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
 | |
| 		// An exact integer
 | |
| 		f.mant >>= uint(-f.exp)
 | |
| 		f.exp = 0
 | |
| 		return *f, *f
 | |
| 	}
 | |
| 	expBiased := exp - flt.bias
 | |
| 
 | |
| 	upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
 | |
| 	if mant != 1<<flt.mantbits || expBiased == 1 {
 | |
| 		lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
 | |
| 	} else {
 | |
| 		lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Normalize normalizes f so that the highest bit of the mantissa is
 | |
| // set, and returns the number by which the mantissa was left-shifted.
 | |
| func (f *extFloat) Normalize() (shift uint) {
 | |
| 	mant, exp := f.mant, f.exp
 | |
| 	if mant == 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 	if mant>>(64-32) == 0 {
 | |
| 		mant <<= 32
 | |
| 		exp -= 32
 | |
| 	}
 | |
| 	if mant>>(64-16) == 0 {
 | |
| 		mant <<= 16
 | |
| 		exp -= 16
 | |
| 	}
 | |
| 	if mant>>(64-8) == 0 {
 | |
| 		mant <<= 8
 | |
| 		exp -= 8
 | |
| 	}
 | |
| 	if mant>>(64-4) == 0 {
 | |
| 		mant <<= 4
 | |
| 		exp -= 4
 | |
| 	}
 | |
| 	if mant>>(64-2) == 0 {
 | |
| 		mant <<= 2
 | |
| 		exp -= 2
 | |
| 	}
 | |
| 	if mant>>(64-1) == 0 {
 | |
| 		mant <<= 1
 | |
| 		exp -= 1
 | |
| 	}
 | |
| 	shift = uint(f.exp - exp)
 | |
| 	f.mant, f.exp = mant, exp
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Multiply sets f to the product f*g: the result is correctly rounded,
 | |
| // but not normalized.
 | |
| func (f *extFloat) Multiply(g extFloat) {
 | |
| 	fhi, flo := f.mant>>32, uint64(uint32(f.mant))
 | |
| 	ghi, glo := g.mant>>32, uint64(uint32(g.mant))
 | |
| 
 | |
| 	// Cross products.
 | |
| 	cross1 := fhi * glo
 | |
| 	cross2 := flo * ghi
 | |
| 
 | |
| 	// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
 | |
| 	f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
 | |
| 	rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
 | |
| 	// Round up.
 | |
| 	rem += (1 << 31)
 | |
| 
 | |
| 	f.mant += (rem >> 32)
 | |
| 	f.exp = f.exp + g.exp + 64
 | |
| }
 | |
| 
 | |
| var uint64pow10 = [...]uint64{
 | |
| 	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
 | |
| 	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
 | |
| }
 | |
| 
 | |
| // AssignDecimal sets f to an approximate value mantissa*10^exp. It
 | |
| // returns true if the value represented by f is guaranteed to be the
 | |
| // best approximation of d after being rounded to a float64 or
 | |
| // float32 depending on flt.
 | |
| func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
 | |
| 	const uint64digits = 19
 | |
| 	const errorscale = 8
 | |
| 	errors := 0 // An upper bound for error, computed in errorscale*ulp.
 | |
| 	if trunc {
 | |
| 		// the decimal number was truncated.
 | |
| 		errors += errorscale / 2
 | |
| 	}
 | |
| 
 | |
| 	f.mant = mantissa
 | |
| 	f.exp = 0
 | |
| 	f.neg = neg
 | |
| 
 | |
| 	// Multiply by powers of ten.
 | |
| 	i := (exp10 - firstPowerOfTen) / stepPowerOfTen
 | |
| 	if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
 | |
| 		return false
 | |
| 	}
 | |
| 	adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
 | |
| 
 | |
| 	// We multiply by exp%step
 | |
| 	if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
 | |
| 		// We can multiply the mantissa exactly.
 | |
| 		f.mant *= uint64pow10[adjExp]
 | |
| 		f.Normalize()
 | |
| 	} else {
 | |
| 		f.Normalize()
 | |
| 		f.Multiply(smallPowersOfTen[adjExp])
 | |
| 		errors += errorscale / 2
 | |
| 	}
 | |
| 
 | |
| 	// We multiply by 10 to the exp - exp%step.
 | |
| 	f.Multiply(powersOfTen[i])
 | |
| 	if errors > 0 {
 | |
| 		errors += 1
 | |
| 	}
 | |
| 	errors += errorscale / 2
 | |
| 
 | |
| 	// Normalize
 | |
| 	shift := f.Normalize()
 | |
| 	errors <<= shift
 | |
| 
 | |
| 	// Now f is a good approximation of the decimal.
 | |
| 	// Check whether the error is too large: that is, if the mantissa
 | |
| 	// is perturbated by the error, the resulting float64 will change.
 | |
| 	// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
 | |
| 	//
 | |
| 	// In many cases the approximation will be good enough.
 | |
| 	denormalExp := flt.bias - 63
 | |
| 	var extrabits uint
 | |
| 	if f.exp <= denormalExp {
 | |
| 		// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
 | |
| 		extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
 | |
| 	} else {
 | |
| 		extrabits = uint(63 - flt.mantbits)
 | |
| 	}
 | |
| 
 | |
| 	halfway := uint64(1) << (extrabits - 1)
 | |
| 	mant_extra := f.mant & (1<<extrabits - 1)
 | |
| 
 | |
| 	// Do a signed comparison here! If the error estimate could make
 | |
| 	// the mantissa round differently for the conversion to double,
 | |
| 	// then we can't give a definite answer.
 | |
| 	if int64(halfway)-int64(errors) < int64(mant_extra) &&
 | |
| 		int64(mant_extra) < int64(halfway)+int64(errors) {
 | |
| 		return false
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Frexp10 is an analogue of math.Frexp for decimal powers. It scales
 | |
| // f by an approximate power of ten 10^-exp, and returns exp10, so
 | |
| // that f*10^exp10 has the same value as the old f, up to an ulp,
 | |
| // as well as the index of 10^-exp in the powersOfTen table.
 | |
| func (f *extFloat) frexp10() (exp10, index int) {
 | |
| 	// The constants expMin and expMax constrain the final value of the
 | |
| 	// binary exponent of f. We want a small integral part in the result
 | |
| 	// because finding digits of an integer requires divisions, whereas
 | |
| 	// digits of the fractional part can be found by repeatedly multiplying
 | |
| 	// by 10.
 | |
| 	const expMin = -60
 | |
| 	const expMax = -32
 | |
| 	// Find power of ten such that x * 10^n has a binary exponent
 | |
| 	// between expMin and expMax.
 | |
| 	approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
 | |
| 	i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
 | |
| Loop:
 | |
| 	for {
 | |
| 		exp := f.exp + powersOfTen[i].exp + 64
 | |
| 		switch {
 | |
| 		case exp < expMin:
 | |
| 			i++
 | |
| 		case exp > expMax:
 | |
| 			i--
 | |
| 		default:
 | |
| 			break Loop
 | |
| 		}
 | |
| 	}
 | |
| 	// Apply the desired decimal shift on f. It will have exponent
 | |
| 	// in the desired range. This is multiplication by 10^-exp10.
 | |
| 	f.Multiply(powersOfTen[i])
 | |
| 
 | |
| 	return -(firstPowerOfTen + i*stepPowerOfTen), i
 | |
| }
 | |
| 
 | |
| // frexp10Many applies a common shift by a power of ten to a, b, c.
 | |
| func frexp10Many(a, b, c *extFloat) (exp10 int) {
 | |
| 	exp10, i := c.frexp10()
 | |
| 	a.Multiply(powersOfTen[i])
 | |
| 	b.Multiply(powersOfTen[i])
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // FixedDecimal stores in d the first n significant digits
 | |
| // of the decimal representation of f. It returns false
 | |
| // if it cannot be sure of the answer.
 | |
| func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
 | |
| 	if f.mant == 0 {
 | |
| 		d.nd = 0
 | |
| 		d.dp = 0
 | |
| 		d.neg = f.neg
 | |
| 		return true
 | |
| 	}
 | |
| 	if n == 0 {
 | |
| 		panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
 | |
| 	}
 | |
| 	// Multiply by an appropriate power of ten to have a reasonable
 | |
| 	// number to process.
 | |
| 	f.Normalize()
 | |
| 	exp10, _ := f.frexp10()
 | |
| 
 | |
| 	shift := uint(-f.exp)
 | |
| 	integer := uint32(f.mant >> shift)
 | |
| 	fraction := f.mant - (uint64(integer) << shift)
 | |
| 	ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
 | |
| 
 | |
| 	// Write exactly n digits to d.
 | |
| 	needed := n        // how many digits are left to write.
 | |
| 	integerDigits := 0 // the number of decimal digits of integer.
 | |
| 	pow10 := uint64(1) // the power of ten by which f was scaled.
 | |
| 	for i, pow := 0, uint64(1); i < 20; i++ {
 | |
| 		if pow > uint64(integer) {
 | |
| 			integerDigits = i
 | |
| 			break
 | |
| 		}
 | |
| 		pow *= 10
 | |
| 	}
 | |
| 	rest := integer
 | |
| 	if integerDigits > needed {
 | |
| 		// the integral part is already large, trim the last digits.
 | |
| 		pow10 = uint64pow10[integerDigits-needed]
 | |
| 		integer /= uint32(pow10)
 | |
| 		rest -= integer * uint32(pow10)
 | |
| 	} else {
 | |
| 		rest = 0
 | |
| 	}
 | |
| 
 | |
| 	// Write the digits of integer: the digits of rest are omitted.
 | |
| 	var buf [32]byte
 | |
| 	pos := len(buf)
 | |
| 	for v := integer; v > 0; {
 | |
| 		v1 := v / 10
 | |
| 		v -= 10 * v1
 | |
| 		pos--
 | |
| 		buf[pos] = byte(v + '0')
 | |
| 		v = v1
 | |
| 	}
 | |
| 	for i := pos; i < len(buf); i++ {
 | |
| 		d.d[i-pos] = buf[i]
 | |
| 	}
 | |
| 	nd := len(buf) - pos
 | |
| 	d.nd = nd
 | |
| 	d.dp = integerDigits + exp10
 | |
| 	needed -= nd
 | |
| 
 | |
| 	if needed > 0 {
 | |
| 		if rest != 0 || pow10 != 1 {
 | |
| 			panic("strconv: internal error, rest != 0 but needed > 0")
 | |
| 		}
 | |
| 		// Emit digits for the fractional part. Each time, 10*fraction
 | |
| 		// fits in a uint64 without overflow.
 | |
| 		for needed > 0 {
 | |
| 			fraction *= 10
 | |
| 			ε *= 10 // the uncertainty scales as we multiply by ten.
 | |
| 			if 2*ε > 1<<shift {
 | |
| 				// the error is so large it could modify which digit to write, abort.
 | |
| 				return false
 | |
| 			}
 | |
| 			digit := fraction >> shift
 | |
| 			d.d[nd] = byte(digit + '0')
 | |
| 			fraction -= digit << shift
 | |
| 			nd++
 | |
| 			needed--
 | |
| 		}
 | |
| 		d.nd = nd
 | |
| 	}
 | |
| 
 | |
| 	// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
 | |
| 	// can be interpreted as a small number (< 1) to be added to the last digit of the
 | |
| 	// numerator.
 | |
| 	//
 | |
| 	// If rest > 0, the amount is:
 | |
| 	//    (rest<<shift | fraction) / (pow10 << shift)
 | |
| 	//    fraction being known with a ±ε uncertainty.
 | |
| 	//    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
 | |
| 	//
 | |
| 	// If rest = 0, pow10 == 1 and the amount is
 | |
| 	//    fraction / (1 << shift)
 | |
| 	//    fraction being known with a ±ε uncertainty.
 | |
| 	//
 | |
| 	// We pass this information to the rounding routine for adjustment.
 | |
| 
 | |
| 	ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
 | |
| 	if !ok {
 | |
| 		return false
 | |
| 	}
 | |
| 	// Trim trailing zeros.
 | |
| 	for i := d.nd - 1; i >= 0; i-- {
 | |
| 		if d.d[i] != '0' {
 | |
| 			d.nd = i + 1
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // adjustLastDigitFixed assumes d contains the representation of the integral part
 | |
| // of some number, whose fractional part is num / (den << shift). The numerator
 | |
| // num is only known up to an uncertainty of size ε, assumed to be less than
 | |
| // (den << shift)/2.
 | |
| //
 | |
| // It will increase the last digit by one to account for correct rounding, typically
 | |
| // when the fractional part is greater than 1/2, and will return false if ε is such
 | |
| // that no correct answer can be given.
 | |
| func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
 | |
| 	if num > den<<shift {
 | |
| 		panic("strconv: num > den<<shift in adjustLastDigitFixed")
 | |
| 	}
 | |
| 	if 2*ε > den<<shift {
 | |
| 		panic("strconv: ε > (den<<shift)/2")
 | |
| 	}
 | |
| 	if 2*(num+ε) < den<<shift {
 | |
| 		return true
 | |
| 	}
 | |
| 	if 2*(num-ε) > den<<shift {
 | |
| 		// increment d by 1.
 | |
| 		i := d.nd - 1
 | |
| 		for ; i >= 0; i-- {
 | |
| 			if d.d[i] == '9' {
 | |
| 				d.nd--
 | |
| 			} else {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		if i < 0 {
 | |
| 			d.d[0] = '1'
 | |
| 			d.nd = 1
 | |
| 			d.dp++
 | |
| 		} else {
 | |
| 			d.d[i]++
 | |
| 		}
 | |
| 		return true
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // ShortestDecimal stores in d the shortest decimal representation of f
 | |
| // which belongs to the open interval (lower, upper), where f is supposed
 | |
| // to lie. It returns false whenever the result is unsure. The implementation
 | |
| // uses the Grisu3 algorithm.
 | |
| func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
 | |
| 	if f.mant == 0 {
 | |
| 		d.nd = 0
 | |
| 		d.dp = 0
 | |
| 		d.neg = f.neg
 | |
| 		return true
 | |
| 	}
 | |
| 	if f.exp == 0 && *lower == *f && *lower == *upper {
 | |
| 		// an exact integer.
 | |
| 		var buf [24]byte
 | |
| 		n := len(buf) - 1
 | |
| 		for v := f.mant; v > 0; {
 | |
| 			v1 := v / 10
 | |
| 			v -= 10 * v1
 | |
| 			buf[n] = byte(v + '0')
 | |
| 			n--
 | |
| 			v = v1
 | |
| 		}
 | |
| 		nd := len(buf) - n - 1
 | |
| 		for i := 0; i < nd; i++ {
 | |
| 			d.d[i] = buf[n+1+i]
 | |
| 		}
 | |
| 		d.nd, d.dp = nd, nd
 | |
| 		for d.nd > 0 && d.d[d.nd-1] == '0' {
 | |
| 			d.nd--
 | |
| 		}
 | |
| 		if d.nd == 0 {
 | |
| 			d.dp = 0
 | |
| 		}
 | |
| 		d.neg = f.neg
 | |
| 		return true
 | |
| 	}
 | |
| 	upper.Normalize()
 | |
| 	// Uniformize exponents.
 | |
| 	if f.exp > upper.exp {
 | |
| 		f.mant <<= uint(f.exp - upper.exp)
 | |
| 		f.exp = upper.exp
 | |
| 	}
 | |
| 	if lower.exp > upper.exp {
 | |
| 		lower.mant <<= uint(lower.exp - upper.exp)
 | |
| 		lower.exp = upper.exp
 | |
| 	}
 | |
| 
 | |
| 	exp10 := frexp10Many(lower, f, upper)
 | |
| 	// Take a safety margin due to rounding in frexp10Many, but we lose precision.
 | |
| 	upper.mant++
 | |
| 	lower.mant--
 | |
| 
 | |
| 	// The shortest representation of f is either rounded up or down, but
 | |
| 	// in any case, it is a truncation of upper.
 | |
| 	shift := uint(-upper.exp)
 | |
| 	integer := uint32(upper.mant >> shift)
 | |
| 	fraction := upper.mant - (uint64(integer) << shift)
 | |
| 
 | |
| 	// How far we can go down from upper until the result is wrong.
 | |
| 	allowance := upper.mant - lower.mant
 | |
| 	// How far we should go to get a very precise result.
 | |
| 	targetDiff := upper.mant - f.mant
 | |
| 
 | |
| 	// Count integral digits: there are at most 10.
 | |
| 	var integerDigits int
 | |
| 	for i, pow := 0, uint64(1); i < 20; i++ {
 | |
| 		if pow > uint64(integer) {
 | |
| 			integerDigits = i
 | |
| 			break
 | |
| 		}
 | |
| 		pow *= 10
 | |
| 	}
 | |
| 	for i := 0; i < integerDigits; i++ {
 | |
| 		pow := uint64pow10[integerDigits-i-1]
 | |
| 		digit := integer / uint32(pow)
 | |
| 		d.d[i] = byte(digit + '0')
 | |
| 		integer -= digit * uint32(pow)
 | |
| 		// evaluate whether we should stop.
 | |
| 		if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
 | |
| 			d.nd = i + 1
 | |
| 			d.dp = integerDigits + exp10
 | |
| 			d.neg = f.neg
 | |
| 			// Sometimes allowance is so large the last digit might need to be
 | |
| 			// decremented to get closer to f.
 | |
| 			return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
 | |
| 		}
 | |
| 	}
 | |
| 	d.nd = integerDigits
 | |
| 	d.dp = d.nd + exp10
 | |
| 	d.neg = f.neg
 | |
| 
 | |
| 	// Compute digits of the fractional part. At each step fraction does not
 | |
| 	// overflow. The choice of minExp implies that fraction is less than 2^60.
 | |
| 	var digit int
 | |
| 	multiplier := uint64(1)
 | |
| 	for {
 | |
| 		fraction *= 10
 | |
| 		multiplier *= 10
 | |
| 		digit = int(fraction >> shift)
 | |
| 		d.d[d.nd] = byte(digit + '0')
 | |
| 		d.nd++
 | |
| 		fraction -= uint64(digit) << shift
 | |
| 		if fraction < allowance*multiplier {
 | |
| 			// We are in the admissible range. Note that if allowance is about to
 | |
| 			// overflow, that is, allowance > 2^64/10, the condition is automatically
 | |
| 			// true due to the limited range of fraction.
 | |
| 			return adjustLastDigit(d,
 | |
| 				fraction, targetDiff*multiplier, allowance*multiplier,
 | |
| 				1<<shift, multiplier*2)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
 | |
| // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
 | |
| // It assumes that a decimal digit is worth ulpDecimal*ε, and that
 | |
| // all data is known with a error estimate of ulpBinary*ε.
 | |
| func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
 | |
| 	if ulpDecimal < 2*ulpBinary {
 | |
| 		// Approximation is too wide.
 | |
| 		return false
 | |
| 	}
 | |
| 	for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
 | |
| 		d.d[d.nd-1]--
 | |
| 		currentDiff += ulpDecimal
 | |
| 	}
 | |
| 	if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
 | |
| 		// we have two choices, and don't know what to do.
 | |
| 		return false
 | |
| 	}
 | |
| 	if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
 | |
| 		// we went too far
 | |
| 		return false
 | |
| 	}
 | |
| 	if d.nd == 1 && d.d[0] == '0' {
 | |
| 		// the number has actually reached zero.
 | |
| 		d.nd = 0
 | |
| 		d.dp = 0
 | |
| 	}
 | |
| 	return true
 | |
| }
 |