546 lines
16 KiB
Go
546 lines
16 KiB
Go
// Copyright 2017 Google Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Package intervalset provides an abtraction for dealing with sets of
|
|
// 1-dimensional spans, such as sets of time ranges. The Set type provides set
|
|
// arithmetic and enumeration methods based on an Interval interface.
|
|
//
|
|
// DISCLAIMER: This library is not yet stable, so expect breaking changes.
|
|
package intervalset
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
)
|
|
|
|
// Interval is the interface for a continuous or discrete span. The interval is
|
|
// assumed to be inclusive of the starting point and exclusive of the ending
|
|
// point.
|
|
//
|
|
// All methods in the interface are non-destructive: Calls to the methods should
|
|
// not modify the interval. Furthermore, the implementation assumes an interval
|
|
// will not be mutated by user code, either.
|
|
type Interval interface {
|
|
// Intersect returns the intersection of an interval with another
|
|
// interval. The function may panic if the other interval is incompatible.
|
|
Intersect(Interval) Interval
|
|
|
|
// Before returns true if the interval is completely before another interval.
|
|
Before(Interval) bool
|
|
|
|
// IsZero returns true for the zero value of an interval.
|
|
IsZero() bool
|
|
|
|
// Bisect returns two intervals, one on the lower side of x and one on the
|
|
// upper side of x, corresponding to the subtraction of x from the original
|
|
// interval. The returned intervals are always within the range of the
|
|
// original interval.
|
|
Bisect(x Interval) (Interval, Interval)
|
|
|
|
// Adjoin returns the union of two intervals, if the intervals are exactly
|
|
// adjacent, or the zero interval if they are not.
|
|
Adjoin(Interval) Interval
|
|
|
|
// Encompass returns an interval that covers the exact extents of two
|
|
// intervals.
|
|
Encompass(Interval) Interval
|
|
}
|
|
|
|
// Set is a set of interval objects used for
|
|
type Set struct {
|
|
//non-overlapping intervals
|
|
intervals []Interval
|
|
// factory is needed when the extents of the empty set are needed.
|
|
factory intervalFactory
|
|
}
|
|
|
|
// SetInput is an interface implemented by Set and ImmutableSet. It is used when
|
|
// one of these types type must take a set as an argument.
|
|
type SetInput interface {
|
|
// Extent returns the Interval defined by the minimum and maximum values of
|
|
// the set.
|
|
Extent() Interval
|
|
|
|
// IntervalsBetween iterates over the intervals within extents set and calls f
|
|
// with each. If f returns false, iteration ceases.
|
|
//
|
|
// Any interval within the set that overlaps partially with extents is truncated
|
|
// before being passed to f.
|
|
IntervalsBetween(extents Interval, f IntervalReceiver)
|
|
}
|
|
|
|
// NewSet returns a new set given a sorted slice of intervals. This function
|
|
// panics if the intervals are not sorted.
|
|
func NewSet(intervals []Interval) *Set {
|
|
return NewSetV1(intervals, oldBehaviorFactory.makeZero)
|
|
}
|
|
|
|
// NewSetV1 returns a new set given a sorted slice of intervals. This function
|
|
// panics if the intervals are not sorted.
|
|
//
|
|
// NewSetV1 will be renamed and will replace NewSet in the v1 release.
|
|
func NewSetV1(intervals []Interval, makeZero func() Interval) *Set {
|
|
if err := CheckSorted(intervals); err != nil {
|
|
panic(err)
|
|
}
|
|
return &Set{intervals, makeIntervalFactor(makeZero)}
|
|
}
|
|
|
|
// CheckSorted checks that interval[i+1] is not before interval[i] for all
|
|
// relevant elements of the input slice. Nil is returned when len(intervals) is
|
|
// 0 or 1.
|
|
func CheckSorted(intervals []Interval) error {
|
|
for i := 0; i < len(intervals)-1; i++ {
|
|
if !intervals[i].Before(intervals[i+1]) {
|
|
return fmt.Errorf("!intervals[%d].Before(intervals[%d]) for %s, %s", i, i+1, intervals[i], intervals[i+1])
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Empty returns a new, empty set of intervals.
|
|
func Empty() *Set {
|
|
return EmptyV1(oldBehaviorFactory.makeZero)
|
|
}
|
|
|
|
// EmptyV1 returns a new, empty set of intervals using the semantics of the V1
|
|
// API, which will require a factory method for construction of an empty interval.
|
|
func EmptyV1(makeZero func() Interval) *Set {
|
|
return &Set{nil, makeIntervalFactor(makeZero)}
|
|
}
|
|
|
|
// Copy returns a copy of a set that may be mutated without affecting the original.
|
|
func (s *Set) Copy() *Set {
|
|
return &Set{append([]Interval(nil), s.intervals...), s.factory}
|
|
}
|
|
|
|
// String returns a human-friendly representation of the set.
|
|
func (s *Set) String() string {
|
|
var strs []string
|
|
for _, x := range s.intervals {
|
|
strs = append(strs, fmt.Sprintf("%s", x))
|
|
}
|
|
return fmt.Sprintf("{%s}", strings.Join(strs, ", "))
|
|
}
|
|
|
|
// Extent returns the Interval defined by the minimum and maximum values of the
|
|
// set.
|
|
func (s *Set) Extent() Interval {
|
|
if len(s.intervals) == 0 {
|
|
return s.factory.makeZero()
|
|
}
|
|
return s.intervals[0].Encompass(s.intervals[len(s.intervals)-1])
|
|
}
|
|
|
|
// Add adds all the elements of another set to this set.
|
|
func (s *Set) Add(b SetInput) {
|
|
// Deal with nil extent. See https://github.com/google/go-intervals/issues/6.
|
|
bExtent := b.Extent()
|
|
if bExtent == nil {
|
|
return // no changes needed
|
|
}
|
|
|
|
// Loop through the intervals of x
|
|
b.IntervalsBetween(bExtent, func(x Interval) bool {
|
|
s.insert(x)
|
|
return true
|
|
})
|
|
}
|
|
|
|
// Contains reports whether an interval is entirely contained by the set.
|
|
func (s *Set) Contains(ival Interval) bool {
|
|
// Loop through the intervals of x
|
|
next := s.iterator(ival, true)
|
|
for setInterval := next(); setInterval != nil; setInterval = next() {
|
|
left, right := ival.Bisect(setInterval)
|
|
if !left.IsZero() {
|
|
return false
|
|
}
|
|
ival = right
|
|
}
|
|
return ival.IsZero()
|
|
}
|
|
|
|
// adjoinOrAppend adds an interval to the end of intervals unless that value
|
|
// directly adjoins the last element of intervals, in which case the last
|
|
// element will be replaced by the adjoined interval.
|
|
func adjoinOrAppend(intervals []Interval, x Interval) []Interval {
|
|
lastIndex := len(intervals) - 1
|
|
if lastIndex == -1 {
|
|
return append(intervals, x)
|
|
}
|
|
adjoined := intervals[lastIndex].Adjoin(x)
|
|
if adjoined.IsZero() {
|
|
return append(intervals, x)
|
|
}
|
|
intervals[lastIndex] = adjoined
|
|
return intervals
|
|
}
|
|
|
|
func (s *Set) insert(insertion Interval) {
|
|
if s.Contains(insertion) {
|
|
return
|
|
}
|
|
// TODO(reddaly): Something like Java's ArrayList would allow both O(log(n))
|
|
// insertion and O(log(n)) lookup. For now, we have O(log(n)) lookup and O(n)
|
|
// insertion.
|
|
var newIntervals []Interval
|
|
push := func(x Interval) {
|
|
newIntervals = adjoinOrAppend(newIntervals, x)
|
|
}
|
|
inserted := false
|
|
for _, x := range s.intervals {
|
|
if inserted {
|
|
push(x)
|
|
continue
|
|
}
|
|
if insertion.Before(x) {
|
|
push(insertion)
|
|
push(x)
|
|
inserted = true
|
|
continue
|
|
}
|
|
// [===left===)[==x===)[===right===)
|
|
left, right := insertion.Bisect(x)
|
|
if !left.IsZero() {
|
|
push(left)
|
|
}
|
|
push(x)
|
|
// Replace the interval being inserted with the remaining portion of the
|
|
// interval to be inserted.
|
|
if right.IsZero() {
|
|
inserted = true
|
|
} else {
|
|
insertion = right
|
|
}
|
|
}
|
|
if !inserted {
|
|
push(insertion)
|
|
}
|
|
s.intervals = newIntervals
|
|
}
|
|
|
|
// Sub destructively modifies the set by subtracting b.
|
|
func (s *Set) Sub(b SetInput) {
|
|
extent := s.Extent()
|
|
// Deal with nil extent. See https://github.com/google/go-intervals/issues/6.
|
|
if extent == nil {
|
|
// Set is already empty, no changes necessary.
|
|
return
|
|
}
|
|
var newIntervals []Interval
|
|
push := func(x Interval) {
|
|
newIntervals = adjoinOrAppend(newIntervals, x)
|
|
}
|
|
nextX := s.iterator(extent, true)
|
|
nextY, cancel := setIntervalIterator(b, extent)
|
|
defer cancel()
|
|
|
|
x := nextX()
|
|
y := nextY()
|
|
for x != nil {
|
|
// If y == nil, all of the remaining intervals in A are to the right of B,
|
|
// so just yield them.
|
|
if y == nil {
|
|
push(x)
|
|
x = nextX()
|
|
continue
|
|
}
|
|
// Split x into parts left and right of y.
|
|
// The diagrams below show the bisection results for various situations.
|
|
// if left.IsZero() && !right.IsZero()
|
|
// xxx
|
|
// y1y1 y2y2 y3 y4y4
|
|
// xxx
|
|
// or
|
|
// xxxxxxxxxxxx
|
|
// y1y1 y2y2 y3 y4y4
|
|
//
|
|
// if !left.IsZero() && !right.IsZero()
|
|
// x1x1x1x1x1
|
|
// y1 y2
|
|
//
|
|
// if left.IsZero() && right.IsZero()
|
|
// x1x1x1x1 x2x2x2
|
|
// y1y1y1y1y1y1y1
|
|
//
|
|
// if !left.IsZero() && right.IsZero()
|
|
// x1x1 x2
|
|
// y1y1y1y1
|
|
left, right := x.Bisect(y)
|
|
|
|
// If the left side of x is non-zero, it can definitely be pushed to the
|
|
// resulting interval set since no subsequent y value will intersect it.
|
|
// The sequences look something like
|
|
// x1x1x1x1x1 OR x1x1x1 x2
|
|
// y1 y2 y1y1y1
|
|
// left = x1x1 x1x1x1
|
|
// right = x1x1 {zero}
|
|
if !left.IsZero() {
|
|
push(left)
|
|
}
|
|
|
|
if !right.IsZero() {
|
|
// If the right side of x is non-zero:
|
|
// 1) Right is the remaining portion of x that needs to be pushed.
|
|
x = right
|
|
// 2) It's not possible for current y to intersect it, so advance y. It's
|
|
// possible nextY() will intersect it, so don't push yet.
|
|
y = nextY()
|
|
} else {
|
|
// There's nothing left of x to push, so advance x.
|
|
x = nextX()
|
|
}
|
|
}
|
|
|
|
// Setting s.intervals is the only side effect in this function.
|
|
s.intervals = newIntervals
|
|
}
|
|
|
|
// intersectionIterator returns a function that yields intervals that are
|
|
// members of the intersection of s and b, in increasing order.
|
|
func (s *Set) intersectionIterator(b SetInput) (iter func() Interval, cancel func()) {
|
|
return intervalMapperToIterator(func(f IntervalReceiver) {
|
|
sExtent, bExtent := s.Extent(), b.Extent()
|
|
// Deal with nil extent. See https://github.com/google/go-intervals/issues/6.
|
|
if sExtent == nil || bExtent == nil {
|
|
// IF either set is already empty, the intersection is empty. This
|
|
// voids a panic below where a valid Interval is needed for each
|
|
// extent.
|
|
return
|
|
}
|
|
nextX := s.iterator(bExtent, true)
|
|
nextY, cancel := setIntervalIterator(b, sExtent)
|
|
defer cancel()
|
|
|
|
x := nextX()
|
|
y := nextY()
|
|
// Loop through corresponding intervals of S and B.
|
|
// If y == nil, all of the remaining intervals in S are to the right of B.
|
|
// If x == nil, all of the remaining intervals in B are to the right of S.
|
|
for x != nil && y != nil {
|
|
if x.Before(y) {
|
|
x = nextX()
|
|
continue
|
|
}
|
|
if y.Before(x) {
|
|
y = nextY()
|
|
continue
|
|
}
|
|
xyIntersect := x.Intersect(y)
|
|
if !xyIntersect.IsZero() {
|
|
if !f(xyIntersect) {
|
|
return
|
|
}
|
|
_, right := x.Bisect(y)
|
|
if !right.IsZero() {
|
|
x = right
|
|
} else {
|
|
x = nextX()
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
// Intersect destructively modifies the set by intersectin it with b.
|
|
func (s *Set) Intersect(b SetInput) {
|
|
iter, cancel := s.intersectionIterator(b)
|
|
defer cancel()
|
|
var newIntervals []Interval
|
|
for x := iter(); x != nil; x = iter() {
|
|
newIntervals = append(newIntervals, x)
|
|
}
|
|
s.intervals = newIntervals
|
|
}
|
|
|
|
// searchLow returns the first index in s.intervals that is not before x.
|
|
func (s *Set) searchLow(x Interval) int {
|
|
return sort.Search(len(s.intervals), func(i int) bool {
|
|
return !s.intervals[i].Before(x)
|
|
})
|
|
}
|
|
|
|
// searchLow returns the index of the first interval in s.intervals that is
|
|
// entirely after x.
|
|
func (s *Set) searchHigh(x Interval) int {
|
|
return sort.Search(len(s.intervals), func(i int) bool {
|
|
return x.Before(s.intervals[i])
|
|
})
|
|
}
|
|
|
|
// iterator returns a function that yields elements of the set in order.
|
|
//
|
|
// The function returned will return nil when finished iterating.
|
|
func (s *Set) iterator(extents Interval, forward bool) func() Interval {
|
|
low, high := s.searchLow(extents), s.searchHigh(extents)
|
|
|
|
i, stride := low, 1
|
|
if !forward {
|
|
i, stride = high-1, -1
|
|
}
|
|
|
|
return func() Interval {
|
|
if i < 0 || i >= len(s.intervals) {
|
|
return nil
|
|
}
|
|
x := s.intervals[i]
|
|
i += stride
|
|
return x
|
|
}
|
|
}
|
|
|
|
// IntervalReceiver is a function used for iterating over a set of intervals. It
|
|
// takes the start and end times and returns true if the iteration should
|
|
// continue.
|
|
type IntervalReceiver func(Interval) bool
|
|
|
|
// IntervalsBetween iterates over the intervals within extents set and calls f
|
|
// with each. If f returns false, iteration ceases.
|
|
//
|
|
// Any interval within the set that overlaps partially with extents is truncated
|
|
// before being passed to f.
|
|
func (s *Set) IntervalsBetween(extents Interval, f IntervalReceiver) {
|
|
// Begin = first index in s.intervals that is not before extents.
|
|
begin := sort.Search(len(s.intervals), func(i int) bool {
|
|
return !s.intervals[i].Before(extents)
|
|
})
|
|
|
|
// TODO(reddaly): Optimize this by performing a binary search for the ending
|
|
// point.
|
|
for _, interval := range s.intervals[begin:] {
|
|
// If the interval is after the extents, there will be no more overlap, so
|
|
// break out of the loop.
|
|
if extents.Before(interval) {
|
|
break
|
|
}
|
|
portionOfInterval := extents.Intersect(interval)
|
|
if portionOfInterval.IsZero() {
|
|
continue
|
|
}
|
|
|
|
if !f(portionOfInterval) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// Intervals iterates over all the intervals within the set and calls f with
|
|
// each one. If f returns false, iteration ceases.
|
|
func (s *Set) Intervals(f IntervalReceiver) {
|
|
for _, interval := range s.intervals {
|
|
if !f(interval) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// AllIntervals returns an ordered slice of all the intervals in the set.
|
|
func (s *Set) AllIntervals() []Interval {
|
|
return append(make([]Interval, 0, len(s.intervals)), s.intervals...)
|
|
}
|
|
|
|
// ImmutableSet returns an immutable copy of this set.
|
|
func (s *Set) ImmutableSet() *ImmutableSet {
|
|
return NewImmutableSet(s.AllIntervals())
|
|
}
|
|
|
|
// mapFn reports true if an iteration should continue. It is called on values of
|
|
// a collection.
|
|
type mapFn func(interface{}) bool
|
|
|
|
// mapFn calls mapFn for each member of a collection.
|
|
type mapperFn func(mapFn)
|
|
|
|
// iteratorFn returns the next item in an iteration or the zero value. The
|
|
// second return value indicates whether the first return value is a member of
|
|
// the collection.
|
|
type iteratorFn func() (interface{}, bool)
|
|
|
|
// generatorFn returns an iterator.
|
|
type generatorFn func() iteratorFn
|
|
|
|
// cancelFn should be called to clean up the goroutine that would otherwise leak.
|
|
type cancelFn func()
|
|
|
|
// mapperToIterator returns an iteratorFn version of a mappingFn. The second
|
|
// return value must be called at the end of iteration, or the underlying
|
|
// goroutine will leak.
|
|
func mapperToIterator(m mapperFn) (iteratorFn, cancelFn) {
|
|
generatedValues := make(chan interface{}, 1)
|
|
stopCh := make(chan interface{}, 1)
|
|
go func() {
|
|
m(func(obj interface{}) bool {
|
|
select {
|
|
case <-stopCh:
|
|
return false
|
|
case generatedValues <- obj:
|
|
return true
|
|
}
|
|
})
|
|
close(generatedValues)
|
|
}()
|
|
iter := func() (interface{}, bool) {
|
|
value, ok := <-generatedValues
|
|
return value, ok
|
|
}
|
|
return iter, func() {
|
|
stopCh <- nil
|
|
}
|
|
}
|
|
|
|
func intervalMapperToIterator(mapper func(IntervalReceiver)) (iter func() Interval, cancel func()) {
|
|
genericMapper := func(m mapFn) {
|
|
mapper(func(ival Interval) bool {
|
|
return m(ival)
|
|
})
|
|
}
|
|
|
|
genericIter, cancel := mapperToIterator(genericMapper)
|
|
return func() Interval {
|
|
genericVal, iterationEnded := genericIter()
|
|
if !iterationEnded {
|
|
return nil
|
|
}
|
|
ival, ok := genericVal.(Interval)
|
|
if !ok {
|
|
panic("unexpected value type, internal error")
|
|
}
|
|
return ival
|
|
}, cancel
|
|
}
|
|
|
|
func setIntervalIterator(s SetInput, extent Interval) (iter func() Interval, cancel func()) {
|
|
return intervalMapperToIterator(func(f IntervalReceiver) {
|
|
s.IntervalsBetween(extent, f)
|
|
})
|
|
}
|
|
|
|
// oldBehaviorFactory returns a nil interval. This was used before
|
|
// construction of a Set/ImmutableSet required passing in a factory method for
|
|
// creating a zero interval object.
|
|
var oldBehaviorFactory = makeIntervalFactor(func() Interval { return nil })
|
|
|
|
// intervalFactory is used to construct a zero-value interval. The zero value
|
|
// interval may be different for different types of intervals, so a factory is
|
|
// sometimes needed to write generic algorithms about intervals.
|
|
type intervalFactory struct {
|
|
makeZero func() Interval
|
|
}
|
|
|
|
func makeIntervalFactor(makeZero func() Interval) intervalFactory {
|
|
return intervalFactory{makeZero}
|
|
}
|