automation-tests/vendor/github.com/google/go-intervals/intervalset/intervalset.go

546 lines
16 KiB
Go

// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package intervalset provides an abtraction for dealing with sets of
// 1-dimensional spans, such as sets of time ranges. The Set type provides set
// arithmetic and enumeration methods based on an Interval interface.
//
// DISCLAIMER: This library is not yet stable, so expect breaking changes.
package intervalset
import (
"fmt"
"sort"
"strings"
)
// Interval is the interface for a continuous or discrete span. The interval is
// assumed to be inclusive of the starting point and exclusive of the ending
// point.
//
// All methods in the interface are non-destructive: Calls to the methods should
// not modify the interval. Furthermore, the implementation assumes an interval
// will not be mutated by user code, either.
type Interval interface {
// Intersect returns the intersection of an interval with another
// interval. The function may panic if the other interval is incompatible.
Intersect(Interval) Interval
// Before returns true if the interval is completely before another interval.
Before(Interval) bool
// IsZero returns true for the zero value of an interval.
IsZero() bool
// Bisect returns two intervals, one on the lower side of x and one on the
// upper side of x, corresponding to the subtraction of x from the original
// interval. The returned intervals are always within the range of the
// original interval.
Bisect(x Interval) (Interval, Interval)
// Adjoin returns the union of two intervals, if the intervals are exactly
// adjacent, or the zero interval if they are not.
Adjoin(Interval) Interval
// Encompass returns an interval that covers the exact extents of two
// intervals.
Encompass(Interval) Interval
}
// Set is a set of interval objects used for
type Set struct {
//non-overlapping intervals
intervals []Interval
// factory is needed when the extents of the empty set are needed.
factory intervalFactory
}
// SetInput is an interface implemented by Set and ImmutableSet. It is used when
// one of these types type must take a set as an argument.
type SetInput interface {
// Extent returns the Interval defined by the minimum and maximum values of
// the set.
Extent() Interval
// IntervalsBetween iterates over the intervals within extents set and calls f
// with each. If f returns false, iteration ceases.
//
// Any interval within the set that overlaps partially with extents is truncated
// before being passed to f.
IntervalsBetween(extents Interval, f IntervalReceiver)
}
// NewSet returns a new set given a sorted slice of intervals. This function
// panics if the intervals are not sorted.
func NewSet(intervals []Interval) *Set {
return NewSetV1(intervals, oldBehaviorFactory.makeZero)
}
// NewSetV1 returns a new set given a sorted slice of intervals. This function
// panics if the intervals are not sorted.
//
// NewSetV1 will be renamed and will replace NewSet in the v1 release.
func NewSetV1(intervals []Interval, makeZero func() Interval) *Set {
if err := CheckSorted(intervals); err != nil {
panic(err)
}
return &Set{intervals, makeIntervalFactor(makeZero)}
}
// CheckSorted checks that interval[i+1] is not before interval[i] for all
// relevant elements of the input slice. Nil is returned when len(intervals) is
// 0 or 1.
func CheckSorted(intervals []Interval) error {
for i := 0; i < len(intervals)-1; i++ {
if !intervals[i].Before(intervals[i+1]) {
return fmt.Errorf("!intervals[%d].Before(intervals[%d]) for %s, %s", i, i+1, intervals[i], intervals[i+1])
}
}
return nil
}
// Empty returns a new, empty set of intervals.
func Empty() *Set {
return EmptyV1(oldBehaviorFactory.makeZero)
}
// EmptyV1 returns a new, empty set of intervals using the semantics of the V1
// API, which will require a factory method for construction of an empty interval.
func EmptyV1(makeZero func() Interval) *Set {
return &Set{nil, makeIntervalFactor(makeZero)}
}
// Copy returns a copy of a set that may be mutated without affecting the original.
func (s *Set) Copy() *Set {
return &Set{append([]Interval(nil), s.intervals...), s.factory}
}
// String returns a human-friendly representation of the set.
func (s *Set) String() string {
var strs []string
for _, x := range s.intervals {
strs = append(strs, fmt.Sprintf("%s", x))
}
return fmt.Sprintf("{%s}", strings.Join(strs, ", "))
}
// Extent returns the Interval defined by the minimum and maximum values of the
// set.
func (s *Set) Extent() Interval {
if len(s.intervals) == 0 {
return s.factory.makeZero()
}
return s.intervals[0].Encompass(s.intervals[len(s.intervals)-1])
}
// Add adds all the elements of another set to this set.
func (s *Set) Add(b SetInput) {
// Deal with nil extent. See https://github.com/google/go-intervals/issues/6.
bExtent := b.Extent()
if bExtent == nil {
return // no changes needed
}
// Loop through the intervals of x
b.IntervalsBetween(bExtent, func(x Interval) bool {
s.insert(x)
return true
})
}
// Contains reports whether an interval is entirely contained by the set.
func (s *Set) Contains(ival Interval) bool {
// Loop through the intervals of x
next := s.iterator(ival, true)
for setInterval := next(); setInterval != nil; setInterval = next() {
left, right := ival.Bisect(setInterval)
if !left.IsZero() {
return false
}
ival = right
}
return ival.IsZero()
}
// adjoinOrAppend adds an interval to the end of intervals unless that value
// directly adjoins the last element of intervals, in which case the last
// element will be replaced by the adjoined interval.
func adjoinOrAppend(intervals []Interval, x Interval) []Interval {
lastIndex := len(intervals) - 1
if lastIndex == -1 {
return append(intervals, x)
}
adjoined := intervals[lastIndex].Adjoin(x)
if adjoined.IsZero() {
return append(intervals, x)
}
intervals[lastIndex] = adjoined
return intervals
}
func (s *Set) insert(insertion Interval) {
if s.Contains(insertion) {
return
}
// TODO(reddaly): Something like Java's ArrayList would allow both O(log(n))
// insertion and O(log(n)) lookup. For now, we have O(log(n)) lookup and O(n)
// insertion.
var newIntervals []Interval
push := func(x Interval) {
newIntervals = adjoinOrAppend(newIntervals, x)
}
inserted := false
for _, x := range s.intervals {
if inserted {
push(x)
continue
}
if insertion.Before(x) {
push(insertion)
push(x)
inserted = true
continue
}
// [===left===)[==x===)[===right===)
left, right := insertion.Bisect(x)
if !left.IsZero() {
push(left)
}
push(x)
// Replace the interval being inserted with the remaining portion of the
// interval to be inserted.
if right.IsZero() {
inserted = true
} else {
insertion = right
}
}
if !inserted {
push(insertion)
}
s.intervals = newIntervals
}
// Sub destructively modifies the set by subtracting b.
func (s *Set) Sub(b SetInput) {
extent := s.Extent()
// Deal with nil extent. See https://github.com/google/go-intervals/issues/6.
if extent == nil {
// Set is already empty, no changes necessary.
return
}
var newIntervals []Interval
push := func(x Interval) {
newIntervals = adjoinOrAppend(newIntervals, x)
}
nextX := s.iterator(extent, true)
nextY, cancel := setIntervalIterator(b, extent)
defer cancel()
x := nextX()
y := nextY()
for x != nil {
// If y == nil, all of the remaining intervals in A are to the right of B,
// so just yield them.
if y == nil {
push(x)
x = nextX()
continue
}
// Split x into parts left and right of y.
// The diagrams below show the bisection results for various situations.
// if left.IsZero() && !right.IsZero()
// xxx
// y1y1 y2y2 y3 y4y4
// xxx
// or
// xxxxxxxxxxxx
// y1y1 y2y2 y3 y4y4
//
// if !left.IsZero() && !right.IsZero()
// x1x1x1x1x1
// y1 y2
//
// if left.IsZero() && right.IsZero()
// x1x1x1x1 x2x2x2
// y1y1y1y1y1y1y1
//
// if !left.IsZero() && right.IsZero()
// x1x1 x2
// y1y1y1y1
left, right := x.Bisect(y)
// If the left side of x is non-zero, it can definitely be pushed to the
// resulting interval set since no subsequent y value will intersect it.
// The sequences look something like
// x1x1x1x1x1 OR x1x1x1 x2
// y1 y2 y1y1y1
// left = x1x1 x1x1x1
// right = x1x1 {zero}
if !left.IsZero() {
push(left)
}
if !right.IsZero() {
// If the right side of x is non-zero:
// 1) Right is the remaining portion of x that needs to be pushed.
x = right
// 2) It's not possible for current y to intersect it, so advance y. It's
// possible nextY() will intersect it, so don't push yet.
y = nextY()
} else {
// There's nothing left of x to push, so advance x.
x = nextX()
}
}
// Setting s.intervals is the only side effect in this function.
s.intervals = newIntervals
}
// intersectionIterator returns a function that yields intervals that are
// members of the intersection of s and b, in increasing order.
func (s *Set) intersectionIterator(b SetInput) (iter func() Interval, cancel func()) {
return intervalMapperToIterator(func(f IntervalReceiver) {
sExtent, bExtent := s.Extent(), b.Extent()
// Deal with nil extent. See https://github.com/google/go-intervals/issues/6.
if sExtent == nil || bExtent == nil {
// IF either set is already empty, the intersection is empty. This
// voids a panic below where a valid Interval is needed for each
// extent.
return
}
nextX := s.iterator(bExtent, true)
nextY, cancel := setIntervalIterator(b, sExtent)
defer cancel()
x := nextX()
y := nextY()
// Loop through corresponding intervals of S and B.
// If y == nil, all of the remaining intervals in S are to the right of B.
// If x == nil, all of the remaining intervals in B are to the right of S.
for x != nil && y != nil {
if x.Before(y) {
x = nextX()
continue
}
if y.Before(x) {
y = nextY()
continue
}
xyIntersect := x.Intersect(y)
if !xyIntersect.IsZero() {
if !f(xyIntersect) {
return
}
_, right := x.Bisect(y)
if !right.IsZero() {
x = right
} else {
x = nextX()
}
}
}
})
}
// Intersect destructively modifies the set by intersectin it with b.
func (s *Set) Intersect(b SetInput) {
iter, cancel := s.intersectionIterator(b)
defer cancel()
var newIntervals []Interval
for x := iter(); x != nil; x = iter() {
newIntervals = append(newIntervals, x)
}
s.intervals = newIntervals
}
// searchLow returns the first index in s.intervals that is not before x.
func (s *Set) searchLow(x Interval) int {
return sort.Search(len(s.intervals), func(i int) bool {
return !s.intervals[i].Before(x)
})
}
// searchLow returns the index of the first interval in s.intervals that is
// entirely after x.
func (s *Set) searchHigh(x Interval) int {
return sort.Search(len(s.intervals), func(i int) bool {
return x.Before(s.intervals[i])
})
}
// iterator returns a function that yields elements of the set in order.
//
// The function returned will return nil when finished iterating.
func (s *Set) iterator(extents Interval, forward bool) func() Interval {
low, high := s.searchLow(extents), s.searchHigh(extents)
i, stride := low, 1
if !forward {
i, stride = high-1, -1
}
return func() Interval {
if i < 0 || i >= len(s.intervals) {
return nil
}
x := s.intervals[i]
i += stride
return x
}
}
// IntervalReceiver is a function used for iterating over a set of intervals. It
// takes the start and end times and returns true if the iteration should
// continue.
type IntervalReceiver func(Interval) bool
// IntervalsBetween iterates over the intervals within extents set and calls f
// with each. If f returns false, iteration ceases.
//
// Any interval within the set that overlaps partially with extents is truncated
// before being passed to f.
func (s *Set) IntervalsBetween(extents Interval, f IntervalReceiver) {
// Begin = first index in s.intervals that is not before extents.
begin := sort.Search(len(s.intervals), func(i int) bool {
return !s.intervals[i].Before(extents)
})
// TODO(reddaly): Optimize this by performing a binary search for the ending
// point.
for _, interval := range s.intervals[begin:] {
// If the interval is after the extents, there will be no more overlap, so
// break out of the loop.
if extents.Before(interval) {
break
}
portionOfInterval := extents.Intersect(interval)
if portionOfInterval.IsZero() {
continue
}
if !f(portionOfInterval) {
return
}
}
}
// Intervals iterates over all the intervals within the set and calls f with
// each one. If f returns false, iteration ceases.
func (s *Set) Intervals(f IntervalReceiver) {
for _, interval := range s.intervals {
if !f(interval) {
return
}
}
}
// AllIntervals returns an ordered slice of all the intervals in the set.
func (s *Set) AllIntervals() []Interval {
return append(make([]Interval, 0, len(s.intervals)), s.intervals...)
}
// ImmutableSet returns an immutable copy of this set.
func (s *Set) ImmutableSet() *ImmutableSet {
return NewImmutableSet(s.AllIntervals())
}
// mapFn reports true if an iteration should continue. It is called on values of
// a collection.
type mapFn func(interface{}) bool
// mapFn calls mapFn for each member of a collection.
type mapperFn func(mapFn)
// iteratorFn returns the next item in an iteration or the zero value. The
// second return value indicates whether the first return value is a member of
// the collection.
type iteratorFn func() (interface{}, bool)
// generatorFn returns an iterator.
type generatorFn func() iteratorFn
// cancelFn should be called to clean up the goroutine that would otherwise leak.
type cancelFn func()
// mapperToIterator returns an iteratorFn version of a mappingFn. The second
// return value must be called at the end of iteration, or the underlying
// goroutine will leak.
func mapperToIterator(m mapperFn) (iteratorFn, cancelFn) {
generatedValues := make(chan interface{}, 1)
stopCh := make(chan interface{}, 1)
go func() {
m(func(obj interface{}) bool {
select {
case <-stopCh:
return false
case generatedValues <- obj:
return true
}
})
close(generatedValues)
}()
iter := func() (interface{}, bool) {
value, ok := <-generatedValues
return value, ok
}
return iter, func() {
stopCh <- nil
}
}
func intervalMapperToIterator(mapper func(IntervalReceiver)) (iter func() Interval, cancel func()) {
genericMapper := func(m mapFn) {
mapper(func(ival Interval) bool {
return m(ival)
})
}
genericIter, cancel := mapperToIterator(genericMapper)
return func() Interval {
genericVal, iterationEnded := genericIter()
if !iterationEnded {
return nil
}
ival, ok := genericVal.(Interval)
if !ok {
panic("unexpected value type, internal error")
}
return ival
}, cancel
}
func setIntervalIterator(s SetInput, extent Interval) (iter func() Interval, cancel func()) {
return intervalMapperToIterator(func(f IntervalReceiver) {
s.IntervalsBetween(extent, f)
})
}
// oldBehaviorFactory returns a nil interval. This was used before
// construction of a Set/ImmutableSet required passing in a factory method for
// creating a zero interval object.
var oldBehaviorFactory = makeIntervalFactor(func() Interval { return nil })
// intervalFactory is used to construct a zero-value interval. The zero value
// interval may be different for different types of intervals, so a factory is
// sometimes needed to write generic algorithms about intervals.
type intervalFactory struct {
makeZero func() Interval
}
func makeIntervalFactor(makeZero func() Interval) intervalFactory {
return intervalFactory{makeZero}
}