
Douglas Schilling Landgraf Yariv Rachmani
Container On Wheels Engineer @ Red Hat Principal Quality Software Engineer @ Red Hat
QM Maintainer QM Maintainer
<dougsland@redhat.com> <yrachman@redhat.com>

Freedom From Interference (FFI)

1

Boston Thu Aug 15 2024

● What’s Freedom From Interference?
● Automotive Distribution and FFI
● Podman, cgroups, bluechi and systemd
● Demo

Agenda

2

 Quick start:
Why FFI is important for for critical systems?

3

“Ensuring that safety-critical components operate independently and are
not disrupted by faults or unintended interactions from other system components”

How about real examples of standards that incorporates FFI?

4

DO-178C is to ensure that safety-critical software in airborne
systems is developed to a high level of safety and reliability
to reduce the risk of accidents or incidents caused by
software failures.

ARP4754, Aerospace Recommended Practice ARP4754B, is
a guideline from SAE International, dealing with the
development processes which support certification of Aircraft
systems, addressing "the complete aircraft development
cycle, from systems requirements through systems
verification

ISO 26262 is an international functional safety
standard for the development of electrical and
electronic systems in road vehicles. It defines
guidelines to minimize the risk of accidents and
ensure that automotive components perform their
intended functions correctly and at the right time.

IEC 62304 is an international standard that specifies life cycle
requirements for the development of medical software and
software within medical devices.

 How complex it can be to create a car OS?

5

 Government Regulations

 Functional Safe (FuSa)

 General safety principles applicable across various industries

 ISO 26262 (Automotive)

Quality Management (QM)Automotive Safety Integrity Level (ASIL)

Operational System

An accredited third-party entity
validates and certifies whether
the operating system complies
with all safety standards.

Safety requirements

Inspectors in the datacenter

6

composefs crun

3rd vendor
software
integration

Tire
pressureUpdates

on the air

Safety
security
settings

Radio AM/FM
News
PodCast

User
profile

bluetooth

Wifi Client

Sensors

Google
Assistant

Cruise
Control

Climate

Apple Car
Android Auto

Cameras

Car Battery

Wireless
charger

Trailer
Lights

 Platform running on: Automobile Operational System based on Linux

qm bluechi glibc kernel cgroups

Car Manufacturer’s End to end vehicle software platform

How complex it can be to create a car OS?

Safety Requirements: ASIL

7

ASIL A ASIL B ASIL C ASIL D

.

What’s Automotive Safety Integrity Level (ASIL)?

Lowest safety

Failure could cause
only minor injuries

Moderate safety

Failure could lead
to significant but
non-life-threatenin
g injuries.

High safety

Failure could
cause severe
injuries or
possibly death.

Highest safety

Failure is likely to
result in
life-threatening
injuries or fatalities

Examples of ASIL Services

8

Driver Drowsiness
Detection Systems

Collision Warning
 Systems

Tyre Pressure
Systems

Blind Spot Detection
 Systems

Rear-View Camera and
Parking Assistance

Advanced Driver
Assistance Systems

Airbag Control
 Systems

Brakes
 Systems

Safety Requirements: QM

9

What’s Quality Management?

Examples of QM Services

10

Navigation
Systems

Climate Control
Systems

Infotainment
Systems

Power Seats Interior Lighting Systems Power Window

 How complex it to have Linux based car OS?

11

<irony>
It seems simple as
rocket science,
doesn’t it?
</irony>

Let’s find Dan Walsh,
Fedora, CentOS and
Podman Engineers
Douglas.
This is a big mission!

Hey Yariv, sure!
They are in
vacation in
Brazil this
 time!

Automotive Distro and FFI

12

● It is Linux
● Openness and community support
● Freedom From Interference
● Simple configuration

Automotive Special Interest Group (SIG)

Automotive Distro and FFI

13

● No forms to fill out or signatures required for a truly
open-source distro!

● Code IS available in gitlab, github repos

● ALL in ONE Image
○ Download nightly images
○ Build your own images

Automotive SIG

https://autosd.sig.centos.org/AutoSD-9/nightly/
https://sigs.centos.org/automotive/building/

14

FFI: Linux isolation models

15

FFI: Linux isolation

● Additional
layer

● Hardware
Emulation

If there is no OpenShift, what’s the Architecture?

16

/usr/lib/qm/rootfs/
/etc/qm
/var/qm

17

Linux Kernel

Systemd

Podm
an

Container

Systemd

Podm
an

ContainerContainer

/
/etc/
/var/

BlueChi
Agent

BlueChi
Agent

Container

BlueChi
Controller

QMASIL

FFI: Componentes view

Container

Car Manufacture E2E Software

Design can be adjusted according to car manufacturer requirements

Demonstration of
Filesystem separation
between ASIL and QM.

No interferences are
allowed.

19

Bluechi - Node’s Controller and Agent for Services

Compute Node#8
 Bluechi Agent

Compute Node #0
 Bluechi Controller
 Bluechi Agent

Compute Node#2
 Bluechi
 Agent

Compute Node #6
 Bluechi Agent

Compute Node #5
 Bluechi Controller
 Bluechi Agent

Compute Node #4
Bluechi Agent

Compute Node #3
 Bluechi
 Agent

Compute Node#7
 Bluechi Agent

Compute Node #1
 Bluechi Agent

Compute Node #9
 Bluechi Agent

20

FFI: Linux Systemd (Phase 1)

initramfs boot

Systemd loading services

Containers started via Podman Quadlet

i.e (bluechi controller, bluechi agent)

21

FFI: Linux Resource Mmt
(Phase 2 - podman’s view)

Break
System

Airbag Control
System

Tires
Pressure QM

Quadlet files: /etc/containers/systemd/{files.container}

 RadioAC

 Selects Container
 Runtime for run the
 containers: crun

2.1 podman run: systemd reads quadlet
files and initialize a new process for
the container.

22

FFI: Linux Resource Mmt
(Phase 2 - podman’s view)

Break
System

Airbag Control
System

Tires
Pressure QM

Quadlet files: /etc/containers/systemd/{files.container}

podman requests kernel services:
Podman uses system calls (clone,
unshare, etc.) to request the Linux kernel to
create a new process and place it in specific
namespaces (PID, network, mount) for
isolation.

 RadioAC

 Selects Container
 Runtime for run the
 containers: crun

2.22.1 podman run: systemd reads quadlet
files and initialize a new process for
the container.

23

FFI: Linux isolation
(Phase 3 - kernel’s simplest view)

Namespaces

IPC Namespace
(Isolate Interprocess)

UTS Namespace
(Isolate Hostname)

PID Namespace
(Process Isolation)

Network Namespace
(Isolate Network)

Mount Namespace
(Isolate FileSystem)

User Namespace
(Isolate Users IDs &
Permissions)

Cgroup v2 (Control group)3.1 The kernel’s namespace and cgroup
subsystems handle the process’s
assignment to the appropriate
namespaces and cgroups, ensuring
isolation and resource limits.

This sequence ensures the container is properly
isolated and resource-controlled from the
moment it is created.

24

FFI: Linux isolation
(Phase 3 - kernel’s simplest view)

Namespaces

IPC Namespace
(Isolate Interprocess)

UTS Namespace
(Isolate Hostname)

PID Namespace
(Process Isolation)

Network Namespace
(Isolate Network)

Mount Namespace
(Isolate FileSystem)

User Namespace
(Isolate Users IDs &
Permissions)

Cgroup v2 (Control group)

Security Layer

 SELinux

3.1 The kernel’s namespace and cgroup
subsystems handle the process’s
assignment to the appropriate
namespaces and cgroups, ensuring
isolation and resource limits.

This sequence ensures the container is properly
isolated and resource-controlled from the
moment it is created.

SELinux applies mandatory
access control policies to the
process, restricting its
permissions based on
security contexts.

3.2

Let me see what’s
going on in these
syscalls, pointers,

structs…

25

FFI: Linux isolation
(Phase 3 - kernel’s simplest view)

Namespaces

IPC Namespace
(Isolate Interprocess)

UTS Namespace
(Isolate Hostname)

PID Namespace
(Process Isolation)

Network Namespace
(Isolate Network)

Mount Namespace
(Isolate FileSystem)

User Namespace
(Isolate Users IDs &
Permissions)

Cgroup v2 (Control group)

Security Layer

 SELinux SECcomp

3.1 The kernel’s namespace and cgroup
subsystems handle the process’s
assignment to the appropriate
namespaces and cgroups, ensuring
isolation and resource limits.

This sequence ensures the container is properly
isolated and resource-controlled from the
moment it is created.

SELinux applies mandatory
access control policies to the
process, restricting its
permissions based on
security contexts.

3.2

3.3
seccomp filters the system
calls the process can make,
enhancing security by blocking
potentially dangerous operations.

Let me catch
some nasty

syscalls…

26

FFI: Linux isolation
(Phase 3 - kernel’s simplest view)

Namespaces

IPC Namespace
(Isolate Interprocess)

UTS Namespace
(Isolate Hostname)

PID Namespace
(Process Isolation)

Network Namespace
(Isolate Network)

Mount Namespace
(Isolate FileSystem)

User Namespace
(Isolate Users IDs &
Permissions)

Cgroup v2 (Control group)

Security Layer

 SELinux SECcomp

Kernel scheduler enforces
resource limits from cgroup .

3.1 The kernel’s namespace and cgroup
subsystems handle the process’s
assignment to the appropriate
namespaces and cgroups, ensuring
isolation and resource limits.

Scheduler
This sequence ensures the container is properly
isolated and resource-controlled from the
moment it is created.

3.4

SELinux applies mandatory
access control policies to the
process, restricting its
permissions based on
security contexts.

3.2

3.3
seccomp filters the system
calls the process can make,
enhancing security by blocking
potentially dangerous operations. What’s up everyone!

am late for the party
but let's make sure
everyone is all set!

Let me catch
some nasty

syscalls…

27

Is Linux tested to satisfy and mitigate risk
analysis for automotive?

28

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

AC

Let’s image the hacker is smart enough and is able to break the initial security
layers and it’s ALSO able to connect to a nested container as root….

29

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

Next step: Deploy the crypto miner and steal all CPUs priority to mine
while the car is in charge mode and send it to his/her digital wallet.
(from 9PM until 5AM - owner is sleeping)

subZer0> ./make-me-rich
10:24:45 - reading the system …….
10:24:46 - Setting make-me-rich as daemon and hiding files ….
10:24:47 - collecting current OS scheduler ……..
10:24:48 - waiting car be in charge mode …..
…….
21:55:51 - Car is now connected to be charge …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy to make-me-rich…
FAILED, unable to access Operational System system call

30

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

Lets understand what just happened…..

Nested Container ASIL host (side)

journalctl -r
<SNIP>
SELinux is preventing make-me-rich
from map access on the file
/usr/lib64/ld-linux-x86-64.so.2.
... avc: denied { map } <----- HERE

....avc: denied { read } <----- HERE

subZer0> ./make-me-rich
10:24:45 - reading the system …….
10:24:46 - Setting make-me-rich as daemon and hiding files ….
10:24:47 - collecting current OS scheduler ……..
10:24:48 - waiting car be in charge mode …..
…….
21:55:51 - Car is now connected to be charge …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy…
FAILED, unable to access Operational System system call

31

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

But guess what, let’s keep with our imagination….

For some reason, the trainee Disabled SELinux in that
car model for tests and all car models got updated from the
cloud image… OH NO! :-/

Let’s simulate this situation setting the the car OS to permissive mode
[root@RHIVOS-carOS ~]# setenforce 0

32

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

subZer0> ./make-me-rich

21:55:51 - Car is now connected to charged …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy to
make-me-rich: steal_cycles_sched_deadline failed to
boost pid 0: Operation not permitted

33

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

subZer0> ./make-me-rich

21:55:51 - Car is now connected to charged …
21:55:52 - +++ make-me-rich mode starting +++
21:56:53 - +++ reading the current scheduler policy +++
21:56:54 - +++ Setting priority scheduler policy to
make-me-rich: steal_cycles_sched_deadline failed to
boost pid 0: Operation not permitted

BUT WHO SAVED THE DAY?

34

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

ME ?

35

Sample Risk Analysis according to ISO 26262:
SELinux + QM Blocking nested containers attack from “stealing CPU priority”

+ SECComp

Seccomp is a Linux kernel feature that provides a way to filter
and limit the system calls available to a process. By using
seccomp, Podman enhances the security of containers by
minimizing the attack surface and reducing the risk of
malicious activities.

“Several layers of security…”

DEMO TIME

36

https://docs.google.com/file/d/1-suPRTYQtscfgQ8eBZveOvrpGBrJFY34/preview

To the Audience
To DevConf.US Organizers & Volunteers
To Open Source contributors
To Red Hat and Automotive team

37

Thank you all

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Q&A

38

● DevConf2023 Containers in a car by Dan Walsh
● https://sig.centos.org/automotive/getting_started/
● github.com/containers/podman Podman project
● github.com/containers/qm QM project
● github.com/eclipse-bluechi/bluechi Bluechi project
● github.com/containers/engine-stressor Engine Stressor
● https://github.com/containers/Demos/qm/devconf/README.md

https://www.youtube.com/watch?v=FPxka5uDA_4
https://sig.centos.org/automotive/getting_started/
http://github.com/containers/podman
http://github.com/containers/qm
https://github.com/eclipse-bluechi/bluechi
http://github.com/containers/engine-stressor
https://github.com/containers/Demos/qm/devconf/README.md

