--- title: Write a Composition Function in Python state: beta alphaVersion: "1.11" betaVersion: "1.14" weight: 81 description: "Composition functions allow you to template resources using Python" --- Composition functions (or just functions, for short) are custom programs that template Crossplane resources. Crossplane calls composition functions to determine what resources it should create when you create a composite resource (XR). Read the [concepts](https://docs.crossplane.io/latest/concepts/composition-functions) page to learn more about composition functions. You can write a function to template resources using a general purpose programming language. Using a general purpose programming language allows a function to use advanced logic to template resources, like loops and conditionals. This guide explains how to write a composition function in [Python](https://python.org). {{< hint "important" >}} It helps to be familiar with [how composition functions work](https://docs.crossplane.io/latest/concepts/composition-functions#how-composition-functions-work) before following this guide. {{< /hint >}} ## Understand the steps This guide covers writing a composition function for an {{}}XBuckets{{}} composite resource (XR). ```yaml {label="xr"} apiVersion: example.crossplane.io/v1 kind: XBuckets metadata: name: example-buckets spec: region: us-east-2 names: - crossplane-functions-example-a - crossplane-functions-example-b - crossplane-functions-example-c ``` An `XBuckets` XR has a region and an array of bucket names. The function will create an Amazon Web Services (AWS) S3 bucket for each entry in the names array. To write a function in Python you: 1. Install the tools you need to write the function 1. Initialize the function from a template 1. Edit the template to add the function's logic 1. Test the function end-to-end 1. Build and push the function to a package repository This guide covers each of these steps in detail. ## Install the tools you need to write the function To write a function in Python you need: * [Python](https://www.python.org/downloads/) v3.11. * [Hatch](https://hatch.pypa.io/), a Python build tool. This guide uses v1.7. * [Docker Engine](https://docs.docker.com/engine/). This guide uses Engine v24. * The [Crossplane CLI](https://docs.crossplane.io/latest/cli) v1.14 or newer. This guide uses Crossplane CLI v1.14. You don't need access to a Kubernetes cluster or a Crossplane control plane to build or test a composition function. ## Initialize the function from a template Use the `crossplane beta xpkg init` command to initialize a new function. When you run this command it initializes your function using [this GitHub repository](https://github.com/crossplane/function-template-python) as a template. ```shell {copy-lines=1} crossplane beta xpkg init function-xbuckets https://github.com/crossplane/function-template-python -d function-xbuckets Initialized package "function-xbuckets" in directory "/home/negz/control/negz/function-xbuckets" from https://github.com/crossplane/function-template-python/tree/bfed6923ab4c8e7adeed70f41138645fc7d38111 (main) ``` The `crossplane beta init xpkg` command creates a directory named `function-xbuckets`. When you run the command the new directory should look like this: ```shell {copy-lines=1} ls function-xbuckets Dockerfile example/ function/ LICENSE package/ pyproject.toml README.md renovate.json tests/ ``` Your function's code lives in the `function` directory: ```shell {copy-lines=1} ls function/ __version__.py fn.py main.py ``` The `function/fn.py` file is where you add the function's code. It's useful to know about some other files in the template: * `function/main.py` runs the function. You don't need to edit `main.py`. * `Dockerfile` builds the function runtime. You don't need to edit `Dockerfile`. * The `package` directory contains metadata used to build the function package. {{}} In v1.14 of the Crossplane CLI `crossplane beta xpkg init` just clones a template GitHub repository. In a future release the command will automate tasks like replacing the template name with the new function's name. See Crossplane issue [#4941](https://github.com/crossplane/crossplane/issues/4941) for details. {{}} Edit `package/crossplane.yaml` to change the package's name before you start adding code. Name your package `function-xbuckets`. Some functions accept a configuration input. You configure the input when you write a Composition that uses the function. The `package/input` directory defines the OpenAPI schema for the a function's input. The function in this guide doesn't accept an input. For this function you should delete the `package/input` directory. The [composition functions](https://docs.crossplane.io/latest/concepts/composition-functions) documentation explains more the input to a composition function. {{}} If you're writing a function that does use an input type, don't delete the `package/input` directory. Instead edit the file to be specific to your function. The kind `Input` is a placeholder value. The API group `template.fn.crossplane.io` is, too. Change the kind and API group to something meaningful to your function. Edit the `openAPIV3Schema` to represent your function's input schema. {{}} ## Edit the template to add the function's logic You add your function's logic to the {{}}RunFunction{{}} method in `function/fn.py`. When you first open the file it contains a "hello world" function. ```python {label="hello-world"} class FunctionRunner(grpcv1beta1.FunctionRunnerService): def __init__(self): self.log = logging.get_logger() async def RunFunction( self, req: fnv1beta1.RunFunctionRequest, _: grpc.aio.ServicerContext ) -> fnv1beta1.RunFunctionResponse: log = self.log.bind(tag=req.meta.tag) log.info("Running function") rsp = response.to(req) example = "" if "example" in req.input: example = req.input["example"] # TODO: Add your function logic here! response.normal(rsp, f"I was run with input {example}!") log.info("I was run!", input=example) return rsp ``` All Python composition functions have a `RunFunction` method. Crossplane passes everything the function needs to run in a {{}}RunFunctionRequest{{}} object. The function tells Crossplane what resources it should compose by returning a {{}}RunFunctionResponse{{}} object. {{}} Crossplane generates the `RunFunctionRequest` and `RunFunctionResponse` objects using [Protocol Buffers](https://protobuf.dev). You can find detailed schemas for `RunFunctionRequest` and `RunFunctionResponse` in the [Buf Schema Registry](https://buf.build/crossplane/crossplane/docs/main:apiextensions.fn.proto.v1beta1). {{}} Edit the `RunFunction` method to replace it with this code. ```python class FunctionRunner(grpcv1beta1.FunctionRunnerService): def __init__(self): self.log = logging.get_logger() async def RunFunction( self, req: fnv1beta1.RunFunctionRequest, _: grpc.aio.ServicerContext ) -> fnv1beta1.RunFunctionResponse: log = self.log.bind(tag=req.meta.tag) log.info("Running function") rsp = response.to(req) region = req.observed.composite.resource["spec"]["region"] names = req.observed.composite.resource["spec"]["names"] for name in names: rsp.desired.resources[f"xbuckets-{name}"].resource.update( { "apiVersion": "s3.aws.upbound.io/v1beta1", "kind": "Bucket", "metadata": { "annotations": { "crossplane.io/external-name": name, }, }, "spec": { "forProvider": { "region": region, }, }, } ) log.info("Added desired buckets", region=region, count=len(names)) return rsp ``` Expand the below block to view the full `fn.py`, including imports and commentary explaining the function's logic. {{}} ```python """A Crossplane composition function.""" import grpc from crossplane.function import logging, response from crossplane.function.proto.v1beta1 import run_function_pb2 as fnv1beta1 from crossplane.function.proto.v1beta1 import run_function_pb2_grpc as grpcv1beta1 class FunctionRunner(grpcv1beta1.FunctionRunnerService): """A FunctionRunner handles gRPC RunFunctionRequests.""" def __init__(self): """Create a new FunctionRunner.""" self.log = logging.get_logger() async def RunFunction( self, req: fnv1beta1.RunFunctionRequest, _: grpc.aio.ServicerContext ) -> fnv1beta1.RunFunctionResponse: """Run the function.""" # Create a logger for this request. log = self.log.bind(tag=req.meta.tag) log.info("Running function") # Create a response to the request. This copies the desired state and # pipeline context from the request to the response. rsp = response.to(req) # Get the region and a list of bucket names from the observed composite # resource (XR). Crossplane represents resources using the Struct # well-known protobuf type. The Struct Python object can be accessed # like a dictionary. region = req.observed.composite.resource["spec"]["region"] names = req.observed.composite.resource["spec"]["names"] # Add a desired S3 bucket for each name. for name in names: # Crossplane represents desired composed resources using a protobuf # map of messages. This works a little like a Python defaultdict. # Instead of assigning to a new key in the dict-like map, you access # the key and mutate its value as if it did exist. # # The below code works because accessing the xbuckets-{name} key # automatically creates a new, empty fnv1beta1.Resource message. The # Resource message has a resource field containing an empty Struct # object that can be populated from a dictionary by calling update. # # https://protobuf.dev/reference/python/python-generated/#map-fields rsp.desired.resources[f"xbuckets-{name}"].resource.update( { "apiVersion": "s3.aws.upbound.io/v1beta1", "kind": "Bucket", "metadata": { "annotations": { "crossplane.io/external-name": name, }, }, "spec": { "forProvider": { "region": region, }, }, } ) # Log what the function did. This will only appear in the function's pod # logs. A function can use response.normal() and response.warning() to # emit Kubernetes events associated with the XR it's operating on. log.info("Added desired buckets", region=region, count=len(names)) return rsp ``` {{}} This code: 1. Gets the observed composite resource from the `RunFunctionRequest`. 1. Gets the region and bucket names from the observed composite resource. 1. Adds one desired S3 bucket for each bucket name. 1. Returns the desired S3 buckets in a `RunFunctionResponse`. {{}} Crossplane provides a [software development kit](https://github.com/crossplane/function-sdk-python) (SDK) for writing composition functions in Python. This function uses utilities from the SDK. Read the [documentation](https://crossplane.github.io/function-sdk-python) for the SDK. {{}} {{}} The Python SDK automatically generates the `RunFunctionRequest` and `RunFunctionResponse` Python objects from a [Protocol Buffers](https://protobuf.dev) schema. You can see the schema in the [Buf Schema Registry](https://buf.build/crossplane/crossplane/docs/main:apiextensions.fn.proto.v1beta1). The fields of the generated Python objects behave similarly to builtin Python types like dictionaries and lists. You should be aware that there are some differences. Notably, you access the map of observed and desired resources like a dictionary but you can't add a new desired resource by assigning to a map key. Instead, access and mutate the map key as if it already exists. Instead of adding a new resource like this: ```python resource = {"apiVersion": "example.org/v1", "kind": "Composed", ...} rsp.desired.resources["new-resource"] = fnv1beta1.Resource(resource=resource) ``` Pretend it already exists and mutate it, like this: ```python resource = {"apiVersion": "example.org/v1", "kind": "Composed", ...} rsp.desired.resources["new-resource"].resource.update(resource) ``` Refer to the protobuf [Python Generated Code Guide](https://protobuf.dev/reference/python/python-generated/#fields) for further details. {{}} ## Test the function end-to-end You can test your function by adding unit tests, and by using the `crossplane beta render` command. It's a good idea to do both. When you initialize a function from the template it adds some unit tests to `tests/test_fn.py`. These tests use the [`unittest`](https://docs.python.org/3/library/unittest.html) module from the Python standard library. To add test cases, update the `cases` list in `test_run_function`. Expand the below block to view the full `tests/test_fn.py` file for the function. {{}} ```python import dataclasses import unittest from crossplane.function import logging, resource from crossplane.function.proto.v1beta1 import run_function_pb2 as fnv1beta1 from google.protobuf import duration_pb2 as durationpb from google.protobuf import json_format from google.protobuf import struct_pb2 as structpb from function import fn class TestFunctionRunner(unittest.IsolatedAsyncioTestCase): def setUp(self) -> None: logging.configure(level=logging.Level.DISABLED) self.maxDiff = 2000 async def test_run_function(self) -> None: @dataclasses.dataclass class TestCase: reason: str req: fnv1beta1.RunFunctionRequest want: fnv1beta1.RunFunctionResponse cases = [ TestCase( reason="The function should compose two S3 buckets.", req=fnv1beta1.RunFunctionRequest( observed=fnv1beta1.State( composite=fnv1beta1.Resource( resource=resource.dict_to_struct( { "apiVersion": "example.crossplane.io/v1alpha1", "kind": "XBuckets", "metadata": {"name": "test"}, "spec": { "region": "us-east-2", "names": ["test-bucket-a", "test-bucket-b"], }, } ) ) ) ), want=fnv1beta1.RunFunctionResponse( meta=fnv1beta1.ResponseMeta(ttl=durationpb.Duration(seconds=60)), desired=fnv1beta1.State( resources={ "xbuckets-test-bucket-a": fnv1beta1.Resource( resource=resource.dict_to_struct( { "apiVersion": "s3.aws.upbound.io/v1beta1", "kind": "Bucket", "metadata": { "annotations": { "crossplane.io/external-name": "test-bucket-a" }, }, "spec": { "forProvider": {"region": "us-east-2"} }, } ) ), "xbuckets-test-bucket-b": fnv1beta1.Resource( resource=resource.dict_to_struct( { "apiVersion": "s3.aws.upbound.io/v1beta1", "kind": "Bucket", "metadata": { "annotations": { "crossplane.io/external-name": "test-bucket-b" }, }, "spec": { "forProvider": {"region": "us-east-2"} }, } ) ), }, ), context=structpb.Struct(), ), ), ] runner = fn.FunctionRunner() for case in cases: got = await runner.RunFunction(case.req, None) self.assertEqual( json_format.MessageToDict(got), json_format.MessageToDict(case.want), "-want, +got", ) if __name__ == "__main__": unittest.main() ``` {{}} Run the unit tests using `hatch run`: ```shell hatch run test:unit . ---------------------------------------------------------------------- Ran 1 test in 0.003s OK ``` {{}} [Hatch](https://hatch.pypa.io/) is a Python build tool. It builds Python artifacts like wheels. It also manages virtual environments, similar to `virtualenv` or `venv`. The `hatch run` command creates a virtual environment and runs a command in that environment. You configure Hatch using `pyproject.toml`. {{}} You can preview the output of a Composition that uses this function using the Crossplane CLI. You don't need a Crossplane control plane to do this. Create a directory under `function-xbuckets` named `example`, and add the three files `xr.yaml`, `composition.yaml`, and `functions.yaml`. {{}} You can recreate the output below using by running `crossplane beta render` with these files. The `xr.yaml` file contains the composite resource to render: ```yaml apiVersion: example.crossplane.io/v1 kind: XBuckets metadata: name: example-buckets spec: region: us-east-2 names: - crossplane-functions-example-a - crossplane-functions-example-b - crossplane-functions-example-c ``` The `composition.yaml` file contains the Composition to use to render the composite resource: ```yaml apiVersion: apiextensions.crossplane.io/v1 kind: Composition metadata: name: create-buckets spec: compositeTypeRef: apiVersion: example.crossplane.io/v1 kind: XBuckets mode: Pipeline pipeline: - step: create-buckets functionRef: name: function-xbuckets ``` The `functions.yaml` file contains the Functions the Composition references in its pipeline steps: ```yaml apiVersion: pkg.crossplane.io/v1beta1 kind: Function metadata: name: function-xbuckets annotations: render.crossplane.io/runtime: Development spec: # The CLI ignores this package when using the Development runtime. # You can set it to any value. package: xpkg.upbound.io/negz/function-xbuckets:v0.1.0 ``` {{}} Note that the Function in `functions.yaml` uses the {{}}Development{{}} runtime. This tells `crossplane beta render` that your function is running locally. It connects to your locally running function instead of using Docker to pull and run the function. ```yaml {label="development"} apiVersion: pkg.crossplane.io/v1beta1 kind: Function metadata: name: function-xbuckets annotations: render.crossplane.io/runtime: Development ``` Use `hatch run development` to run your function locally. This tells the function to run without encryption or authentication. You should only use it during testing and development. ```shell {label="run"} hatch run development ``` In a separate terminal, run `crossplane beta render`. ```shell crossplane beta render xr.yaml composition.yaml functions.yaml ``` This command calls your function. In the terminal where your function is running you should now see log output: ```shell hatch run development 2024-01-11T22:12:58.153572Z [info ] Running function filename=fn.py lineno=22 tag= 2024-01-11T22:12:58.153792Z [info ] Added desired buckets count=3 filename=fn.py lineno=68 region=us-east-2 tag= ``` The `crossplane beta render` command prints the desired resources the function returns. ```yaml --- apiVersion: example.crossplane.io/v1 kind: XBuckets metadata: name: example-buckets --- apiVersion: s3.aws.upbound.io/v1beta1 kind: Bucket metadata: annotations: crossplane.io/composition-resource-name: xbuckets-crossplane-functions-example-b crossplane.io/external-name: crossplane-functions-example-b generateName: example-buckets- labels: crossplane.io/composite: example-buckets ownerReferences: # Omitted for brevity spec: forProvider: region: us-east-2 --- apiVersion: s3.aws.upbound.io/v1beta1 kind: Bucket metadata: annotations: crossplane.io/composition-resource-name: xbuckets-crossplane-functions-example-c crossplane.io/external-name: crossplane-functions-example-c generateName: example-buckets- labels: crossplane.io/composite: example-buckets ownerReferences: # Omitted for brevity spec: forProvider: region: us-east-2 --- apiVersion: s3.aws.upbound.io/v1beta1 kind: Bucket metadata: annotations: crossplane.io/composition-resource-name: xbuckets-crossplane-functions-example-a crossplane.io/external-name: crossplane-functions-example-a generateName: example-buckets- labels: crossplane.io/composite: example-buckets ownerReferences: # Omitted for brevity spec: forProvider: region: us-east-2 ``` {{}} Read the composition functions documentation to learn more about [testing composition functions](https://docs.crossplane.io/latest/concepts/composition-functions#test-a-composition-that-uses-functions). {{}} ## Build and push the function to a package registry You build a function in two stages. First you build the function's runtime. This is the Open Container Initiative (OCI) image Crossplane uses to run your function. You then embed that runtime in a package, and push it to a package registry. The Crossplane CLI uses `xpkg.upbound.io` as its default package registry. A function supports a single platform, like `linux/amd64`, by default. You can support multiple platforms by building a runtime and package for each platform, then pushing all the packages to a single tag in the registry. Pushing your function to a registry allows you to use your function in a Crossplane control plane. See the [composition functions documentation](https://docs.crossplane.io/latest/concepts/composition-functions). to learn how to use a function in a control plane. Use Docker to build a runtime for each platform. ```shell {copy-lines="1"} docker build . --quiet --platform=linux/amd64 --tag runtime-amd64 sha256:fdf40374cc6f0b46191499fbc1dbbb05ddb76aca854f69f2912e580cfe624b4b ``` ```shell {copy-lines="1"} docker build . --quiet --platform=linux/arm64 --tag runtime-arm64 sha256:cb015ceabf46d2a55ccaeebb11db5659a2fb5e93de36713364efcf6d699069af ``` {{}} You can use whatever tag you want. There's no need to push the runtime images to a registry. The tag is only used to tell `crossplane xpkg build` what runtime to embed. {{}} {{}} Docker uses emulation to create images for different platforms. If building an image for a different platform fails, make sure you have installed `binfmt`. See the [Docker documentation](https://docs.docker.com/build/building/multi-platform/#qemu) for instructions. {{}} Use the Crossplane CLI to build a package for each platform. Each package embeds a runtime image. The {{}}--package-root{{}} flag specifies the `package` directory, which contains `crossplane.yaml`. This includes metadata about the package. The {{}}--embed-runtime-image{{}} flag specifies the runtime image tag built using Docker. The {{}}--package-file{{}} flag specifies specifies where to write the package file to disk. Crossplane package files use the extension `.xpkg`. ```shell {label="build"} crossplane xpkg build \ --package-root=package \ --embed-runtime-image=runtime-amd64 \ --package-file=function-amd64.xpkg ``` ```shell crossplane xpkg build \ --package-root=package \ --embed-runtime-image=runtime-arm64 \ --package-file=function-arm64.xpkg ``` {{}} Crossplane packages are special OCI images. Read more about packages in the [packages documentation](https://docs.crossplane.io/latest/concepts/packages). {{}} Push both package files to a registry. Pushing both files to one tag in the registry creates a [multi-platform](https://docs.docker.com/build/building/multi-platform/) package that runs on both `linux/arm64` and `linux/amd64` hosts. ```shell crossplane xpkg push \ --package-files=function-amd64.xpkg,function-arm64.xpkg \ negz/function-xbuckets:v0.1.0 ``` {{}} If you push the function to a GitHub repository the template automatically sets up continuous integration (CI) using [GitHub Actions](https://github.com/features/actions). The CI workflow will lint, test, and build your function. You can see how the template configures CI by reading `.github/workflows/ci.yaml`. The CI workflow can automatically push packages to `xpkg.upbound.io`. For this to work you must create a repository at https://marketplace.upbound.io. Give the CI workflow access to push to the Marketplace by creating an API token and [adding it to your repository](https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository). Save your API token access ID as a secret named `XPKG_ACCESS_ID` and your API token as a secret named `XPKG_TOKEN`. {{}}