/* Copyright 2024 The Dapr Authors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package openai import ( "context" "reflect" "github.com/dapr/components-contrib/conversation" "github.com/dapr/components-contrib/metadata" "github.com/dapr/kit/logger" kmeta "github.com/dapr/kit/metadata" "github.com/tmc/langchaingo/llms" "github.com/tmc/langchaingo/llms/openai" ) type OpenAI struct { llm llms.Model logger logger.Logger } func NewOpenAI(logger logger.Logger) conversation.Conversation { o := &OpenAI{ logger: logger, } return o } const defaultModel = "gpt-4o" func (o *OpenAI) Init(ctx context.Context, meta conversation.Metadata) error { md := conversation.LangchainMetadata{} err := kmeta.DecodeMetadata(meta.Properties, &md) if err != nil { return err } model := defaultModel if md.Model != "" { model = md.Model } llm, err := openai.New( openai.WithModel(model), openai.WithToken(md.Key), ) if err != nil { return err } o.llm = llm if md.CacheTTL != "" { cachedModel, cacheErr := conversation.CacheModel(ctx, md.CacheTTL, o.llm) if cacheErr != nil { return cacheErr } o.llm = cachedModel } return nil } func (o *OpenAI) GetComponentMetadata() (metadataInfo metadata.MetadataMap) { metadataStruct := conversation.LangchainMetadata{} metadata.GetMetadataInfoFromStructType(reflect.TypeOf(metadataStruct), &metadataInfo, metadata.ConversationType) return } func (o *OpenAI) Converse(ctx context.Context, r *conversation.ConversationRequest) (res *conversation.ConversationResponse, err error) { messages := make([]llms.MessageContent, 0, len(r.Inputs)) for _, input := range r.Inputs { role := conversation.ConvertLangchainRole(input.Role) messages = append(messages, llms.MessageContent{ Role: role, Parts: []llms.ContentPart{ llms.TextPart(input.Message), }, }) } opts := []llms.CallOption{} if r.Temperature > 0 { opts = append(opts, conversation.LangchainTemperature(r.Temperature)) } resp, err := o.llm.GenerateContent(ctx, messages, opts...) if err != nil { return nil, err } outputs := make([]conversation.ConversationResult, 0, len(resp.Choices)) for i := range resp.Choices { outputs = append(outputs, conversation.ConversationResult{ Result: resp.Choices[i].Content, Parameters: r.Parameters, }) } res = &conversation.ConversationResponse{ Outputs: outputs, } return res, nil } func (o *OpenAI) Close() error { return nil }