from time import sleep import dapr.ext.workflow as wf wfr = wf.WorkflowRuntime() @wfr.workflow(name='random_workflow') def task_chain_workflow(ctx: wf.DaprWorkflowContext, x: int): result1 = yield ctx.call_activity(step1, input=x) result2 = yield ctx.call_activity(step2, input=result1) result3 = yield ctx.call_activity(step3, input=result2) return [result1, result2, result3] @wfr.activity def step1(ctx, activity_input): print(f'Step 1: Received input: {activity_input}.') # Do some work return activity_input + 1 @wfr.activity def step2(ctx, activity_input): print(f'Step 2: Received input: {activity_input}.') # Do some work return activity_input * 2 @wfr.activity def step3(ctx, activity_input): print(f'Step 3: Received input: {activity_input}.') # Do some work return activity_input ^ 2 if __name__ == '__main__': wfr.start() sleep(5) # wait for workflow runtime to start wf_client = wf.DaprWorkflowClient() instance_id = wf_client.schedule_new_workflow(workflow=task_chain_workflow, input=10) print(f'Workflow started. Instance ID: {instance_id}') state = wf_client.wait_for_workflow_completion(instance_id) print(f'Workflow completed! Status: {state.runtime_status}') wfr.shutdown()