# A conversational agent over a Postgres database using MCP This quickstart demonstrates how to build a fully functional, enterprise-ready agent that allows users to ask their database any question in natural text and get both the results and a highly structured analysis of complex questions. This quickstart also shows the usage of MCP in Dapr Agents to connect to the database and provides a fully functional ChatGPT-like chat interface using Chainlit. ## Key Benefits - **Conversational Knowledge Base**: Users can talk to their database in natural language, ask complex questions and perform advanced analysis over data - **Conversational Memory**: The agent maintains context across interactions in the user's [database of choice](https://docs.dapr.io/reference/components-reference/supported-state-stores/) - **UI Interface**: Use an out-of-the-box, LLM-ready chat interface using [Chainlit](https://github.com/Chainlit/chainlit) - **Boilerplate-Free DB Layer**: MCP allows the Dapr Agent to connect to the database without requiring users to write Postgres-specific code ## Prerequisites - Python 3.10 (recommended) - pip package manager - OpenAI API key (for the OpenAI example) - [Dapr CLI installed](https://docs.dapr.io/getting-started/install-dapr-cli/) ## Environment Setup ```bash # Create a virtual environment python3.10 -m venv .venv # Activate the virtual environment # On Windows: .venv\Scripts\activate # On macOS/Linux: source .venv/bin/activate # Install dependencies pip install -r requirements.txt # Initialize Dapr dapr init ``` ## LLM Configuration For this example, we'll be using the OpenAI client that is used by default. To target different LLMs, see [this example](../02_llm_call_dapr/README.md). Create a `.env` file in the project root: ```env OPENAI_API_KEY=your_api_key_here ``` Replace `your_api_key_here` with your actual OpenAI API key. ## Postgres Configuration ### Connect to an existing database Create an `.env` file in the root directory of this quickstart and insert your database configuration: ```bash DB_HOST= DB_PORT= DB_NAME= DB_USER= DB_PASSWORD= ``` ### Create a new sample database First, install Postgres on your machine. #### Option 1: Using Docker Create the following directory and copy the sql files there: ```bash mkdir docker-entrypoint-initdb.d cp schema.sql users.sql ./docker-entrypoint-initdb.d ``` Run the database container (Make sure you are in the quickstart directory): ```bash docker run --rm --name sampledb \ -e POSTGRES_PASSWORD=mypassword \ -e POSTGRES_USER=admin \ -e POSTGRES_DB=userdb \ -p 5432:5432 \ -v $(pwd)/docker-entrypoint-initdb.d:/docker-entrypoint-initdb.d \ -d postgres ``` #### Option 2: Using Brew Install Postgres: ```bash # Install and start PostgreSQL brew install postgresql brew services start postgresql # Create user and database (safe to re-run) psql postgres <` to `localhost`.* ```bash docker run --rm -ti -p 8000:8000 -e DATABASE_URI=postgresql://:@:5432/userdb crystaldba/postgres-mcp --access-mode=unrestricted --transport=sse ``` ## Examples ### Load data to Postgres and create a knowledge base chat interface Run the agent: ```bash dapr run --app-id sql --resources-path ./components -- chainlit run app.py -w --port 8001 ``` Wait until the browser opens up. Once open, you're ready to talk to your Postgres database! You can find the agent page at http://localhost:8001. ### Ask Questions Now you can start talking to your data. If using the sample database, ask questions like `Show me all churned users from the past month` and `Can you identify the problematic area in our product that led to users churning?`. #### Testing the agent's memory If you exit the app and restart it, the agent will remember all the previous conversation. When you insall Dapr using `dapr init`, Redis is installed by default and this is where the conversation memory is saved. To change it, edit the `./components/conversationmemory.yaml` file. ## Summary **How It Works:** 1. The MCP server is running and connects to our Postgres database 2. Dapr starts, loading the conversation history storage configs from the `components` folder. The agent connects to the MCP server. 3. Chainlit loads and starts the agent UI in your browser. 4. Users can now talk to their database in natural language and have the agent analyze the data. 5. The conversation history is automatically managed by Dapr and saved in the state store configured in `./components/conversationmemory.yaml`.