from dapr_agents.types.llm import AudioTranslationRequest from dapr_agents import OpenAIAudioClient from dotenv import load_dotenv load_dotenv() client = OpenAIAudioClient() # Specify the audio file to translate audio_file_path = "speech_spanish.mp3" # Create a translation request translation_request = AudioTranslationRequest( model="whisper-1", file=audio_file_path, prompt="The user will provide an audio file in Spanish. Translate the audio to English and transcribe the english text, word for word.", ) # Generate translation translation_response = client.create_translation(request=translation_request) # Display the transcription result if not len(translation_response.text) > 0: exit(1) print("Translation:", translation_response) words = ["dapr", "agents", "open", "source", "framework", "researchers", "developers"] normalized_text = translation_response.text.lower() count = 0 for word in words: if word in normalized_text: count += 1 if count >= 5: print("Success! The transcription contains at least 5 out of 7 words.")