from dapr_agents.llm import DaprChatClient from dapr_agents.types import UserMessage from dotenv import load_dotenv # Load environment variables from .env load_dotenv() # Basic chat completion llm = DaprChatClient() response = llm.generate("Name a famous dog!") if len(response.get_content()) > 0: print("Response: ", response.get_content()) # Chat completion using a prompty file for context llm = DaprChatClient.from_prompty("basic.prompty") response = llm.generate(input_data={"question": "What is your name?"}) if len(response.get_content()) > 0: print("Response with prompty: ", response.get_content()) # Chat completion with user input llm = DaprChatClient() response = llm.generate(messages=[UserMessage("hello")]) if len(response.get_content()) > 0 and "hello" in response.get_content().lower(): print("Response with user input: ", response.get_content())