{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# LLM: OpenAI Chat Completion with Structured Output\n", "\n", "This notebook demonstrates how to use the `OpenAIChatClient` from `dapr-agents` to generate structured output using `Pydantic` models.\n", "\n", "We will:\n", "\n", "* Initialize the OpenAIChatClient.\n", "* Define a Pydantic model to structure the response.\n", "* Use the response_model parameter to get structured output from the LLM." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Install Required Libraries\n", "Before starting, ensure the required libraries are installed:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install dapr-agents python-dotenv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import Environment Variables\n", "\n", "Load your API keys or other configuration values using `dotenv`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from dotenv import load_dotenv\n", "load_dotenv() # Load environment variables from a `.env` file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Enable Logging" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import logging\n", "\n", "logging.basicConfig(level=logging.INFO)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import dapr-agents Libraries\n", "\n", "Import the necessary classes and types from `dapr-agents`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from dapr_agents import OpenAIChatClient\n", "from dapr_agents.types import UserMessage" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initialize LLM Client\n", "\n", "Create an instance of the `OpenAIChatClient`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:dapr_agents.llm.openai.client.base:Initializing OpenAI client...\n" ] } ], "source": [ "llmClient = OpenAIChatClient()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Define the Pydantic Model\n", "\n", "Define a Pydantic model to represent the structured response from the LLM." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from pydantic import BaseModel\n", "\n", "class Dog(BaseModel):\n", " name: str\n", " breed: str\n", " reason: str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate Structured Output (JSON)\n", "\n", "Use the generate method of the `OpenAIChatClient` with the `response_model` parameter to enforce the structure of the response." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:dapr_agents.llm.utils.request:Structured Mode Activated! Mode=json.\n", "INFO:dapr_agents.llm.openai.chat:Invoking ChatCompletion API.\n", "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", "INFO:dapr_agents.llm.openai.chat:Chat completion retrieved successfully.\n", "INFO:dapr_agents.llm.utils.response:Structured output was successfully validated.\n" ] } ], "source": [ "response = llmClient.generate(\n", " messages=[UserMessage(\"One famous dog in history.\")],\n", " response_format=Dog\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Dog(name='Balto', breed='Siberian Husky', reason=\"Balto is famous for his role in the 1925 serum run to Nome, also known as the 'Great Race of Mercy.' This life-saving mission involved a relay of sled dog teams transporting diphtheria antitoxin across harsh Alaskan wilderness under treacherous winter conditions, preventing a potential epidemic. Balto led the final leg of the journey, becoming a symbol of bravery and teamwork.\")" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "response" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" } }, "nbformat": 4, "nbformat_minor": 2 }