from dapr_agents.types.llm import AudioTranscriptionRequest from dapr_agents import OpenAIAudioClient from dotenv import load_dotenv load_dotenv() client = OpenAIAudioClient() # Specify the audio file to transcribe audio_file_path = "speech.mp3" # Create a transcription request transcription_request = AudioTranscriptionRequest( model="whisper-1", file=audio_file_path ) ############ # You can also use audio bytes: ############ # # with open(audio_file_path, "rb") as f: # audio_bytes = f.read() # # transcription_request = AudioTranscriptionRequest( # model="whisper-1", # file=audio_bytes, # File as bytes # language="en" # Optional: Specify the language of the audio # ) # Generate transcription transcription_response = client.create_transcription(request=transcription_request) # Display the transcription result if not len(transcription_response.text) > 0: exit(1) print("Transcription:", transcription_response.text) words = ["dapr", "agents", "open", "source", "framework", "researchers", "developers"] normalized_text = transcription_response.text.lower() count = 0 for word in words: if word in normalized_text: count += 1 if count >= 5: print("Success! The transcription contains at least 5 out of 7 words.")