mirror of https://github.com/dapr/dapr-agents.git
63 lines
1.7 KiB
Python
63 lines
1.7 KiB
Python
import dapr.ext.workflow as wf
|
|
from dotenv import load_dotenv
|
|
from openai import OpenAI
|
|
from time import sleep
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# Initialize Workflow Instance
|
|
wfr = wf.WorkflowRuntime()
|
|
|
|
|
|
# Define Workflow logic
|
|
@wfr.workflow(name="task_chain_workflow")
|
|
def task_chain_workflow(ctx: wf.DaprWorkflowContext):
|
|
result1 = yield ctx.call_activity(get_character)
|
|
result2 = yield ctx.call_activity(get_line, input=result1)
|
|
return result2
|
|
|
|
|
|
# Activity 1
|
|
@wfr.activity(name="step1")
|
|
def get_character(ctx):
|
|
client = OpenAI()
|
|
response = client.chat.completions.create(
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Pick a random character from The Lord of the Rings and respond with the character name only",
|
|
}
|
|
],
|
|
model="gpt-4o",
|
|
)
|
|
character = response.choices[0].message.content
|
|
print(f"Character: {character}")
|
|
return character
|
|
|
|
|
|
# Activity 2
|
|
@wfr.activity(name="step2")
|
|
def get_line(ctx, character: str):
|
|
client = OpenAI()
|
|
response = client.chat.completions.create(
|
|
messages=[{"role": "user", "content": f"What is a famous line by {character}"}],
|
|
model="gpt-4o",
|
|
)
|
|
line = response.choices[0].message.content
|
|
print(f"Line: {line}")
|
|
return line
|
|
|
|
|
|
if __name__ == "__main__":
|
|
wfr.start()
|
|
sleep(5) # wait for workflow runtime to start
|
|
|
|
wf_client = wf.DaprWorkflowClient()
|
|
instance_id = wf_client.schedule_new_workflow(workflow=task_chain_workflow)
|
|
print(f"Workflow started. Instance ID: {instance_id}")
|
|
state = wf_client.wait_for_workflow_completion(instance_id)
|
|
print(f"Workflow completed! Status: {state.runtime_status}")
|
|
|
|
wfr.shutdown()
|