dapr-agents/cookbook/llm/openai_chat_basic.ipynb

276 lines
7.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# LLM: OpenAI Chat Endpoint Basic Examples\n",
"\n",
"This notebook demonstrates how to use the `OpenAIChatClient` in `dapr-agents` for basic tasks with the OpenAI Chat API. We will explore:\n",
"\n",
"* Initializing the OpenAI Chat client.\n",
"* Generating responses to simple prompts.\n",
"* Using a `.prompty` file to provide context/history for enhanced generation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Required Libraries\n",
"Before starting, ensure the required libraries are installed:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install dapr-agents python-dotenv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Environment Variables\n",
"\n",
"Load API keys or other configuration values from your `.env` file using `dotenv`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from dotenv import load_dotenv\n",
"load_dotenv()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import OpenAIChatClient"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from dapr_agents import OpenAIChatClient"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic Chat Completion\n",
"\n",
"Initialize the `OpenAIChatClient` and generate a response to a simple prompt."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Initialize the client\n",
"llm = OpenAIChatClient()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletion(choices=[Choice(finish_reason='stop', index=0, message=MessageContent(content='One famous dog is Lassie, the Rough Collie from the television series and films that became iconic for her intelligence and heroic adventures.', role='assistant'), logprobs=None)], created=1741085405, id='chatcmpl-B7K8brL19kn1KgDTG9on7n7ICnt3P', model='gpt-4o-2024-08-06', object='chat.completion', usage={'completion_tokens': 28, 'prompt_tokens': 12, 'total_tokens': 40, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Generate a response\n",
"response = llm.generate('Name a famous dog!')\n",
"\n",
"# Display the response\n",
"response"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'content': 'One famous dog is Lassie, the Rough Collie from the television series and films that became iconic for her intelligence and heroic adventures.', 'role': 'assistant'}\n"
]
}
],
"source": [
"print(response.get_message())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using a Prompty File for Context\n",
"\n",
"Use a `.prompty` file to provide context for chat history or additional instructions."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAIChatClient.from_prompty('basic-openai-chat-history.prompty')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatPromptTemplate(input_variables=['chat_history', 'question'], pre_filled_variables={}, messages=[SystemMessage(content='You are an AI assistant who helps people find information.\\nAs the assistant, you answer questions briefly, succinctly, \\nand in a personable manner using markdown and even add some personal flair with appropriate emojis.\\n\\n{% for item in chat_history %}\\n{{item.role}}:\\n{{item.content}}\\n{% endfor %}', role='system'), UserMessage(content='{{question}}', role='user')], template_format='jinja2')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.prompt_template"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletion(choices=[Choice(finish_reason='stop', index=0, message=MessageContent(content=\"Hey there! I'm your friendly AI assistant. You can call me whatever you'd like, but I don't have a specific name. 😊 How can I help you today?\", role='assistant'), logprobs=None)], created=1741085407, id='chatcmpl-B7K8dI84xY2hjaEspDtJL5EICbSLh', model='gpt-4o-2024-08-06', object='chat.completion', usage={'completion_tokens': 34, 'prompt_tokens': 57, 'total_tokens': 91, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.generate(input_data={\"question\":\"What is your name?\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chat Completion with Messages"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from dapr_agents.types import UserMessage\n",
"\n",
"# Initialize the client\n",
"llm = OpenAIChatClient()\n",
"\n",
"# Generate a response using structured messages\n",
"response = llm.generate(messages=[UserMessage(\"hello\")])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'content': 'Hello! How can I assist you today?', 'role': 'assistant'}\n"
]
}
],
"source": [
"# Display the structured response\n",
"print(response.get_message())"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"llm.prompt_template"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}