Signed-off-by: Bilgin Ibryam <bibryam@gmail.com> |
||
---|---|---|
.. | ||
components | ||
.gitignore | ||
README.md | ||
app.py | ||
get_schema.py | ||
requirements.txt | ||
schema.sql | ||
users.sql |
README.md
A conversational agent over a Postgres database using MCP
This quickstart demonstrates how to build a fully functional, enterprise-ready agent that allows users to ask their database any question in natural text and get both the results and a highly structured analysis of complex questions. This quickstart also shows the usage of MCP in Dapr Agents to connect to the database and provides a fully functional ChatGPT-like chat interface using Chainlit.
Key Benefits
- Conversational Knowledge Base: Users can talk to their database in natural language, ask complex questions and perform advanced analysis over data
- Conversational Memory: The agent maintains context across interactions in the user's database of choice
- UI Interface: Use an out-of-the-box, LLM-ready chat interface using Chainlit
- Boilerplate-Free DB Layer: MCP allows the Dapr Agent to connect to the database without requiring users to write Postgres-specific code
Prerequisites
- Python 3.10 (recommended)
- pip package manager
- OpenAI API key (for the OpenAI example)
- Dapr CLI installed
Environment Setup
# Create a virtual environment
python3.10 -m venv .venv
# Activate the virtual environment
# On Windows:
.venv\Scripts\activate
# On macOS/Linux:
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Initialize Dapr
dapr init
LLM Configuration
For this example, we'll be using the OpenAI client that is used by default. To target different LLMs, see this example.
Create a .env
file in the project root:
OPENAI_API_KEY=your_api_key_here
Replace your_api_key_here
with your actual OpenAI API key.
Postgres Configuration
Connect to an existing database
Create an .env
file in the root directory of this quickstart and insert your database configuration:
DB_HOST=<HOST>
DB_PORT=<PORT>
DB_NAME=<DATABASE-NAME>
DB_USER=<USER>
DB_PASSWORD=<PASSWORD>
Create a new sample database
First, install Postgres on your machine.
Option 1: Using Docker
Create the following directory and copy the sql files there:
mkdir docker-entrypoint-initdb.d:/docker-entrypoint-initdb.d
cp schema.sql users.sql ./docker-entrypoint-initdb.d:/docker-entrypoint-initdb.d
Run the database container:
docker run --rm --name sampledb \
-e POSTGRES_PASSWORD=mypassword \
-e POSTGRES_USER=admin \
-e POSTGRES_DB=userdb \
-p 5432:5432 \
-v $(pwd)/docker-entrypoint-initdb.d:/docker-entrypoint-initdb.d \
-d postgres
Option 2: Using Brew
Install Postgres:
brew install postgresql
brew services start postgresql
psql postgres
> CREATE USER admin WITH PASSWORD 'mypassword';
> CREATE DATABASE userdb
> GRANT ALL PRIVILEGES ON DATABASE userdb TO admin;
Next, create the users table and seed data:
psql -h localhost -U admin -d userdb -f schema.sql
psql -h localhost -U admin -d userdb -f users.sql
Create .env file
Finally, create an .env
file in the root directory of this quickstart and insert your database configuration:
DB_HOST=localhost
DB_PORT=5432
DB_NAME=userdb
DB_USER=admin
DB_PASSWORD=mypassword
MCP Configuration
To get the Dapr Agent to connect to our Postgres database, we'll use a Postgres MCP server. Change the settings below based on your Postgres configuration:
Note: If you're running Postgres in a Docker container, change <HOST>
to localhost
.
docker run -p 8000:8000 \
-e DATABASE_URI=postgresql://<USERNAME>:<PASSWORD>@<HOST>:5432/userdb \
crystaldba/postgres-mcp --access-mode=unrestricted --transport=sse
Examples
Load data to Postgres and create a knowledge base chat interface
Run the agent:
dapr run --app-id sql --resources-path ./components -- chainlit run app.py -w --port 8001
Wait until the browser opens up. Once open, you're ready to talk to your Postgres database! You can find the agent page at http://localhost:8001.
Ask Questions
Now you can start talking to your data. If using the sample database, ask questions like Show me all churned users from the past month
and Can you identify the problematic area in our product that led to users churning?
.
Testing the agent's memory
If you exit the app and restart it, the agent will remember all the previous conversation. When you insall Dapr using dapr init
, Redis is installed by default and this is where the conversation memory is saved. To change it, edit the ./components/conversationmemory.yaml
file.
Summary
How It Works:
- The MCP server is running and connects to our Postgres database
- Dapr starts, loading the conversation history storage configs from the
components
folder. The agent connects to the MCP server. - Chainlit loads and starts the agent UI in your browser.
- Users can now talk to their database in natural language and have the agent analyze the data.
- The conversation history is automatically managed by Dapr and saved in the state store configured in
./components/conversationmemory.yaml
.