mirror of https://github.com/dapr/dapr-agents.git
Signed-off-by: Bilgin Ibryam <bibryam@gmail.com> |
||
---|---|---|
.. | ||
components | ||
manifests | ||
services | ||
README.md | ||
docker-compose.yaml | ||
install.sh |
README.md
Run Multi agent workflows in Kubernetes
This quickstart demonstrates how to create and orchestrate event-driven workflows with multiple autonomous agents using Dapr Agents running on Kubernetes.
Prerequisites
- Python 3.10 (recommended)
- Pip package manager
- OpenAI API key
- Kind
- Docker
- Helm
Configuration
- Create a
.env
file for your API keys:
OPENAI_API_KEY=your_api_key_here
Install through script
The script will:
- Install Kind with a local registry
- Install Bitnami Redis
- Install Dapr
- Build the images for 05-multi-agent-workflow-dapr-workflows
- Push the images to local in-cluster registry
- Install the components for the agents
- Create the kubernetes secret form
.env
file - Deploy the manifests for the agents
- Port forward the
workload-llm
pod on port8004
- Trigger the workflow for getting to Morder by k8s_http_client.py
Install through manifests
First create a secret from your .env
file:
kubectl create secret generic openai-secrets --from-env-file=.env --namespace default --dry-run=client -o yaml | kubectl apply -f -
Then build the images locally with docker-compose
:
docker-compose -f docker-compose.yaml build --no-cache
Then deploy the manifests:
kubectl apply -f manifests/
Port forward the workload-llm
pod:
kubectl port-forward -n default svc/workflow-llm 8004:80 &>/dev/null &
Trigger the client:
python3 services/client/k8s_http_client.py