mirror of https://github.com/dapr/dapr-agents.git
* Small fixes for llm calls with HF and Elevenlabs Signed-off-by: Elena Kolevska <elena@kolevska.com> * Increase timeout for tests Signed-off-by: Elena Kolevska <elena@kolevska.com> --------- Signed-off-by: Elena Kolevska <elena@kolevska.com> |
||
---|---|---|
.. | ||
README.md | ||
basic.prompty | ||
requirements.txt | ||
text_completion.py |
README.md
LLM calls with Hugging Face
This quickstart demonstrates how to use Dapr Agents' LLM capabilities to interact with the Hugging Face Hub language models and generate both free-form text and structured data. You'll learn how to make basic calls to LLMs and how to extract structured information in a type-safe manner.
Prerequisites
- Python 3.10 (recommended)
- pip package manager
Environment Setup
# Create a virtual environment
python3.10 -m venv .venv
# Activate the virtual environment
# On Windows:
.venv\Scripts\activate
# On macOS/Linux:
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
Examples
Text
1. Run the basic text completion example:
python text_completion.py
The script demonstrates basic usage of the DaprChatClient for text generation:
from dapr_agents.llm import HFHubChatClient
from dapr_agents.types import UserMessage
from dotenv import load_dotenv
load_dotenv()
# Basic chat completion
llm = HFHubChatClient(
model="microsoft/Phi-3-mini-4k-instruct"
)
response = llm.generate("Name a famous dog!")
if len(response.get_content()) > 0:
print("Response: ", response.get_content())
# Chat completion using a prompty file for context
llm = HFHubChatClient.from_prompty('basic.prompty')
response = llm.generate(input_data={"question":"What is your name?"})
if len(response.get_content()) > 0:
print("Response with prompty: ", response.get_content())
# Chat completion with user input
llm = HFHubChatClient()
response = llm.generate(messages=[UserMessage("hello")])
print("Response with user input: ", response.get_content())