mirror of https://github.com/dapr/dapr-agents.git
227 lines
5.2 KiB
Plaintext
227 lines
5.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# LLM: OpenAI Chat Completion with Structured Output\n",
|
|
"\n",
|
|
"This notebook demonstrates how to use the `OpenAIChatClient` from `dapr-agents` to generate structured output using `Pydantic` models.\n",
|
|
"\n",
|
|
"We will:\n",
|
|
"\n",
|
|
"* Initialize the OpenAIChatClient.\n",
|
|
"* Define a Pydantic model to structure the response.\n",
|
|
"* Use the response_model parameter to get structured output from the LLM."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Install Required Libraries\n",
|
|
"Before starting, ensure the required libraries are installed:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install dapr-agents python-dotenv"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Import Environment Variables\n",
|
|
"\n",
|
|
"Load your API keys or other configuration values using `dotenv`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from dotenv import load_dotenv\n",
|
|
"load_dotenv() # Load environment variables from a `.env` file"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Enable Logging"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import logging\n",
|
|
"\n",
|
|
"logging.basicConfig(level=logging.INFO)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Import dapr-agents Libraries\n",
|
|
"\n",
|
|
"Import the necessary classes and types from `dapr-agents`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from dapr_agents import OpenAIChatClient\n",
|
|
"from dapr_agents.types import UserMessage"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Initialize LLM Client\n",
|
|
"\n",
|
|
"Create an instance of the `OpenAIChatClient`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:dapr_agents.llm.openai.client.base:Initializing OpenAI client...\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"llmClient = OpenAIChatClient()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Define the Pydantic Model\n",
|
|
"\n",
|
|
"Define a Pydantic model to represent the structured response from the LLM."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from pydantic import BaseModel\n",
|
|
"\n",
|
|
"class Dog(BaseModel):\n",
|
|
" name: str\n",
|
|
" breed: str\n",
|
|
" reason: str"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Generate Structured Output (JSON)\n",
|
|
"\n",
|
|
"Use the generate method of the `OpenAIChatClient` with the `response_model` parameter to enforce the structure of the response."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:dapr_agents.llm.utils.request:Structured Mode Activated! Mode=json.\n",
|
|
"INFO:dapr_agents.llm.openai.chat:Invoking ChatCompletion API.\n",
|
|
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
|
"INFO:dapr_agents.llm.openai.chat:Chat completion retrieved successfully.\n",
|
|
"INFO:dapr_agents.llm.utils.response:Structured output was successfully validated.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"response = llmClient.generate(\n",
|
|
" messages=[UserMessage(\"One famous dog in history.\")],\n",
|
|
" response_format=Dog\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Dog(name='Balto', breed='Siberian Husky', reason=\"Balto is famous for his role in the 1925 serum run to Nome, also known as the 'Great Race of Mercy.' This life-saving mission involved a relay of sled dog teams transporting diphtheria antitoxin across harsh Alaskan wilderness under treacherous winter conditions, preventing a potential epidemic. Balto led the final leg of the journey, becoming a symbol of bravery and teamwork.\")"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"response"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|