mirror of https://github.com/dapr/dapr-agents.git
				
				
				
			
		
			
				
	
	
		
			37 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			37 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Python
		
	
	
	
| from dapr_agents.types.llm import AudioTranslationRequest
 | |
| from dapr_agents import OpenAIAudioClient
 | |
| from dotenv import load_dotenv
 | |
| 
 | |
| load_dotenv()
 | |
| client = OpenAIAudioClient()
 | |
| 
 | |
| # Specify the audio file to translate
 | |
| audio_file_path = "speech_spanish.mp3"
 | |
| 
 | |
| # Create a translation request
 | |
| translation_request = AudioTranslationRequest(
 | |
|     model="whisper-1",
 | |
|     file=audio_file_path,
 | |
|     prompt="The user will provide an audio file in Spanish. Translate the audio to English and transcribe the english text, word for word.",
 | |
| )
 | |
| 
 | |
| # Generate translation
 | |
| translation_response = client.create_translation(request=translation_request)
 | |
| 
 | |
| # Display the transcription result
 | |
| if not len(translation_response.text) > 0:
 | |
|     exit(1)
 | |
| 
 | |
| print("Translation:", translation_response)
 | |
| 
 | |
| words = ["dapr", "agents", "open", "source", "framework", "researchers", "developers"]
 | |
| normalized_text = translation_response.text.lower()
 | |
| 
 | |
| count = 0
 | |
| for word in words:
 | |
|     if word in normalized_text:
 | |
|         count += 1
 | |
| 
 | |
| if count >= 5:
 | |
|     print("Success! The transcription contains at least 5 out of 7 words.")
 |