mirror of https://github.com/dapr/dapr-agents.git
				
				
				
			
		
			
				
	
	
		
			38 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			38 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Python
		
	
	
	
| from dapr_agents.document.embedder import OpenAIEmbedder
 | |
| from dotenv import load_dotenv
 | |
| 
 | |
| load_dotenv()
 | |
| 
 | |
| # Initialize the embedder
 | |
| embedder = OpenAIEmbedder(
 | |
|     model="text-embedding-ada-002",  # Default embedding model
 | |
|     chunk_size=1000,  # Batch size for processing
 | |
|     max_tokens=8191,  # Maximum tokens per input
 | |
| )
 | |
| 
 | |
| # Generate embedding with a single text
 | |
| text = "Dapr Agents is an open-source framework for researchers and developers"
 | |
| 
 | |
| embedding = embedder.embed(text)
 | |
| 
 | |
| # Display the embedding
 | |
| if len(embedding) > 0:
 | |
|     print(f"Embedding (first 5 values): {embedding[:5]}...")
 | |
| 
 | |
| # Multiple input texts
 | |
| texts = [
 | |
|     "Dapr Agents is an open-source framework for researchers and developers",
 | |
|     "It provides tools to create, orchestrate, and manage agents",
 | |
| ]
 | |
| 
 | |
| # Generate embeddings
 | |
| embeddings = embedder.embed(texts)
 | |
| 
 | |
| if len(embeddings) == 0:
 | |
|     print("No embeddings generated")
 | |
|     exit()
 | |
| 
 | |
| # Display the embeddings
 | |
| for i, emb in enumerate(embeddings):
 | |
|     print(f"Text {i + 1} embedding (first 5 values): {emb[:5]}")
 |