Merge branch 'v1.15' into pulsar-subscribeInitialPosition

This commit is contained in:
Cassie Coyle 2025-03-31 15:08:39 -05:00 committed by GitHub
commit 6c6aba0ba4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 263 additions and 132 deletions

View File

@ -203,7 +203,55 @@ As messages are sent to the given message handler code, there is no concept of r
The example below shows the different ways to stream subscribe to a topic.
{{< tabs Python Go >}}
{{< tabs ".NET" Python Go >}}
{{% codetab %}}
You can use the `SubscribeAsync` method on the `DaprPublishSubscribeClient` to configure the message handler to use to pull messages from the stream.
```c#
using System.Text;
using Dapr.Messaging.PublishSubscribe;
using Dapr.Messaging.PublishSubscribe.Extensions;
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddDaprPubSubClient();
var app = builder.Build();
var messagingClient = app.Services.GetRequiredService<DaprPublishSubscribeClient>();
//Create a dynamic streaming subscription and subscribe with a timeout of 30 seconds and 10 seconds for message handling
var cancellationTokenSource = new CancellationTokenSource(TimeSpan.FromSeconds(30));
var subscription = await messagingClient.SubscribeAsync("pubsub", "myTopic",
new DaprSubscriptionOptions(new MessageHandlingPolicy(TimeSpan.FromSeconds(10), TopicResponseAction.Retry)),
HandleMessageAsync, cancellationTokenSource.Token);
await Task.Delay(TimeSpan.FromMinutes(1));
//When you're done with the subscription, simply dispose of it
await subscription.DisposeAsync();
return;
//Process each message returned from the subscription
Task<TopicResponseAction> HandleMessageAsync(TopicMessage message, CancellationToken cancellationToken = default)
{
try
{
//Do something with the message
Console.WriteLine(Encoding.UTF8.GetString(message.Data.Span));
return Task.FromResult(TopicResponseAction.Success);
}
catch
{
return Task.FromResult(TopicResponseAction.Retry);
}
}
```
[Learn more about streaming subscriptions using the .NET SDK client.]({{< ref "dotnet-messaging-pubsub-howto.md" >}})
{{% /codetab %}}
{{% codetab %}}

View File

@ -39,13 +39,14 @@ The Dapr sidecar doesnt load any workflow definitions. Rather, the sidecar si
Define the workflow activities you'd like your workflow to perform. Activities are a function definition and can take inputs and outputs. The following example creates a counter (activity) called `hello_act` that notifies users of the current counter value. `hello_act` is a function derived from a class called `WorkflowActivityContext`.
```python
def hello_act(ctx: WorkflowActivityContext, input):
@wfr.activity(name='hello_act')
def hello_act(ctx: WorkflowActivityContext, wf_input):
global counter
counter += input
counter += wf_input
print(f'New counter value is: {counter}!', flush=True)
```
[See the `hello_act` workflow activity in context.](https://github.com/dapr/python-sdk/blob/master/examples/demo_workflow/app.py#LL40C1-L43C59)
[See the task chaining workflow activity in context.](https://github.com/dapr/python-sdk/blob/main/examples/workflow/simple.py)
{{% /codetab %}}
@ -226,19 +227,32 @@ Next, register and call the activites in a workflow.
<!--python-->
The `hello_world_wf` function is derived from a class called `DaprWorkflowContext` with input and output parameter types. It also includes a `yield` statement that does the heavy lifting of the workflow and calls the workflow activities.
The `hello_world_wf` function is a function derived from a class called `DaprWorkflowContext` with input and output parameter types. It also includes a `yield` statement that does the heavy lifting of the workflow and calls the workflow activities.
```python
def hello_world_wf(ctx: DaprWorkflowContext, input):
print(f'{input}')
@wfr.workflow(name='hello_world_wf')
def hello_world_wf(ctx: DaprWorkflowContext, wf_input):
print(f'{wf_input}')
yield ctx.call_activity(hello_act, input=1)
yield ctx.call_activity(hello_act, input=10)
yield ctx.wait_for_external_event("event1")
yield ctx.call_activity(hello_retryable_act, retry_policy=retry_policy)
yield ctx.call_child_workflow(child_retryable_wf, retry_policy=retry_policy)
# Change in event handling: Use when_any to handle both event and timeout
event = ctx.wait_for_external_event(event_name)
timeout = ctx.create_timer(timedelta(seconds=30))
winner = yield when_any([event, timeout])
if winner == timeout:
print('Workflow timed out waiting for event')
return 'Timeout'
yield ctx.call_activity(hello_act, input=100)
yield ctx.call_activity(hello_act, input=1000)
return 'Completed'
```
[See the `hello_world_wf` workflow in context.](https://github.com/dapr/python-sdk/blob/master/examples/demo_workflow/app.py#LL32C1-L38C51)
[See the `hello_world_wf` workflow in context.](https://github.com/dapr/python-sdk/blob/main/examples/workflow/simple.py)
{{% /codetab %}}
@ -405,89 +419,177 @@ Finally, compose the application using the workflow.
<!--python-->
[In the following example](https://github.com/dapr/python-sdk/blob/master/examples/demo_workflow/app.py), for a basic Python hello world application using the Python SDK, your project code would include:
[In the following example](https://github.com/dapr/python-sdk/blob/main/examples/workflow/simple.py), for a basic Python hello world application using the Python SDK, your project code would include:
- A Python package called `DaprClient` to receive the Python SDK capabilities.
- A builder with extensions called:
- `WorkflowRuntime`: Allows you to register workflows and workflow activities
- `WorkflowRuntime`: Allows you to register the workflow runtime.
- `DaprWorkflowContext`: Allows you to [create workflows]({{< ref "#write-the-workflow" >}})
- `WorkflowActivityContext`: Allows you to [create workflow activities]({{< ref "#write-the-workflow-activities" >}})
- API calls. In the example below, these calls start, pause, resume, purge, and terminate the workflow.
- API calls. In the example below, these calls start, pause, resume, purge, and completing the workflow.
```python
from dapr.ext.workflow import WorkflowRuntime, DaprWorkflowContext, WorkflowActivityContext
from dapr.clients import DaprClient
from datetime import timedelta
from time import sleep
from dapr.ext.workflow import (
WorkflowRuntime,
DaprWorkflowContext,
WorkflowActivityContext,
RetryPolicy,
DaprWorkflowClient,
when_any,
)
from dapr.conf import Settings
from dapr.clients.exceptions import DaprInternalError
settings = Settings()
counter = 0
retry_count = 0
child_orchestrator_count = 0
child_orchestrator_string = ''
child_act_retry_count = 0
instance_id = 'exampleInstanceID'
child_instance_id = 'childInstanceID'
workflow_name = 'hello_world_wf'
child_workflow_name = 'child_wf'
input_data = 'Hi Counter!'
event_name = 'event1'
event_data = 'eventData'
non_existent_id_error = 'no such instance exists'
retry_policy = RetryPolicy(
first_retry_interval=timedelta(seconds=1),
max_number_of_attempts=3,
backoff_coefficient=2,
max_retry_interval=timedelta(seconds=10),
retry_timeout=timedelta(seconds=100),
)
wfr = WorkflowRuntime()
@wfr.workflow(name='hello_world_wf')
def hello_world_wf(ctx: DaprWorkflowContext, wf_input):
print(f'{wf_input}')
yield ctx.call_activity(hello_act, input=1)
yield ctx.call_activity(hello_act, input=10)
yield ctx.call_activity(hello_retryable_act, retry_policy=retry_policy)
yield ctx.call_child_workflow(child_retryable_wf, retry_policy=retry_policy)
# Change in event handling: Use when_any to handle both event and timeout
event = ctx.wait_for_external_event(event_name)
timeout = ctx.create_timer(timedelta(seconds=30))
winner = yield when_any([event, timeout])
if winner == timeout:
print('Workflow timed out waiting for event')
return 'Timeout'
yield ctx.call_activity(hello_act, input=100)
yield ctx.call_activity(hello_act, input=1000)
return 'Completed'
@wfr.activity(name='hello_act')
def hello_act(ctx: WorkflowActivityContext, wf_input):
global counter
counter += wf_input
print(f'New counter value is: {counter}!', flush=True)
@wfr.activity(name='hello_retryable_act')
def hello_retryable_act(ctx: WorkflowActivityContext):
global retry_count
if (retry_count % 2) == 0:
print(f'Retry count value is: {retry_count}!', flush=True)
retry_count += 1
raise ValueError('Retryable Error')
print(f'Retry count value is: {retry_count}! This print statement verifies retry', flush=True)
retry_count += 1
@wfr.workflow(name='child_retryable_wf')
def child_retryable_wf(ctx: DaprWorkflowContext):
global child_orchestrator_string, child_orchestrator_count
if not ctx.is_replaying:
child_orchestrator_count += 1
print(f'Appending {child_orchestrator_count} to child_orchestrator_string!', flush=True)
child_orchestrator_string += str(child_orchestrator_count)
yield ctx.call_activity(
act_for_child_wf, input=child_orchestrator_count, retry_policy=retry_policy
)
if child_orchestrator_count < 3:
raise ValueError('Retryable Error')
@wfr.activity(name='act_for_child_wf')
def act_for_child_wf(ctx: WorkflowActivityContext, inp):
global child_orchestrator_string, child_act_retry_count
inp_char = chr(96 + inp)
print(f'Appending {inp_char} to child_orchestrator_string!', flush=True)
child_orchestrator_string += inp_char
if child_act_retry_count % 2 == 0:
child_act_retry_count += 1
raise ValueError('Retryable Error')
child_act_retry_count += 1
# ...
def main():
with DaprClient() as d:
host = settings.DAPR_RUNTIME_HOST
port = settings.DAPR_GRPC_PORT
workflowRuntime = WorkflowRuntime(host, port)
workflowRuntime = WorkflowRuntime()
workflowRuntime.register_workflow(hello_world_wf)
workflowRuntime.register_activity(hello_act)
workflowRuntime.start()
wfr.start()
wf_client = DaprWorkflowClient()
# Start workflow
print("==========Start Counter Increase as per Input:==========")
start_resp = d.start_workflow(instance_id=instanceId, workflow_component=workflowComponent,
workflow_name=workflowName, input=inputData, workflow_options=workflowOptions)
print(f"start_resp {start_resp.instance_id}")
print('==========Start Counter Increase as per Input:==========')
wf_client.schedule_new_workflow(
workflow=hello_world_wf, input=input_data, instance_id=instance_id
)
# ...
wf_client.wait_for_workflow_start(instance_id)
# Pause workflow
d.pause_workflow(instance_id=instanceId, workflow_component=workflowComponent)
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
print(f"Get response from {workflowName} after pause call: {getResponse.runtime_status}")
# Sleep to let the workflow run initial activities
sleep(12)
# Resume workflow
d.resume_workflow(instance_id=instanceId, workflow_component=workflowComponent)
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
print(f"Get response from {workflowName} after resume call: {getResponse.runtime_status}")
sleep(1)
# Raise workflow
d.raise_workflow_event(instance_id=instanceId, workflow_component=workflowComponent,
event_name=eventName, event_data=eventData)
assert counter == 11
assert retry_count == 2
assert child_orchestrator_string == '1aa2bb3cc'
sleep(5)
# Purge workflow
d.purge_workflow(instance_id=instanceId, workflow_component=workflowComponent)
try:
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
except DaprInternalError as err:
if nonExistentIDError in err._message:
print("Instance Successfully Purged")
# Pause Test
wf_client.pause_workflow(instance_id=instance_id)
metadata = wf_client.get_workflow_state(instance_id=instance_id)
print(f'Get response from {workflow_name} after pause call: {metadata.runtime_status.name}')
# Kick off another workflow for termination purposes
start_resp = d.start_workflow(instance_id=instanceId, workflow_component=workflowComponent,
workflow_name=workflowName, input=inputData, workflow_options=workflowOptions)
print(f"start_resp {start_resp.instance_id}")
# Resume Test
wf_client.resume_workflow(instance_id=instance_id)
metadata = wf_client.get_workflow_state(instance_id=instance_id)
print(f'Get response from {workflow_name} after resume call: {metadata.runtime_status.name}')
# Terminate workflow
d.terminate_workflow(instance_id=instanceId, workflow_component=workflowComponent)
sleep(1)
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
print(f"Get response from {workflowName} after terminate call: {getResponse.runtime_status}")
sleep(2) # Give the workflow time to reach the event wait state
wf_client.raise_workflow_event(instance_id=instance_id, event_name=event_name, data=event_data)
# Purge workflow
d.purge_workflow(instance_id=instanceId, workflow_component=workflowComponent)
try:
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
except DaprInternalError as err:
if nonExistentIDError in err._message:
print("Instance Successfully Purged")
print('========= Waiting for Workflow completion', flush=True)
try:
state = wf_client.wait_for_workflow_completion(instance_id, timeout_in_seconds=30)
if state.runtime_status.name == 'COMPLETED':
print('Workflow completed! Result: {}'.format(state.serialized_output.strip('"')))
else:
print(f'Workflow failed! Status: {state.runtime_status.name}')
except TimeoutError:
print('*** Workflow timed out!')
wf_client.purge_workflow(instance_id=instance_id)
try:
wf_client.get_workflow_state(instance_id=instance_id)
except DaprInternalError as err:
if non_existent_id_error in err._message:
print('Instance Successfully Purged')
wfr.shutdown()
workflowRuntime.shutdown()
if __name__ == '__main__':
main()
```
{{% /codetab %}}
{{% codetab %}}

View File

@ -14,13 +14,13 @@ Now that you've [authored the workflow and its activities in your application]({
{{% codetab %}}
Manage your workflow within your code. In the workflow example from the [Author a workflow]({{< ref "howto-author-workflow.md#write-the-application" >}}) guide, the workflow is registered in the code using the following APIs:
- **start_workflow**: Start an instance of a workflow
- **get_workflow**: Get information on the status of the workflow
- **schedule_new_workflow**: Start an instance of a workflow
- **get_workflow_state**: Get information on the status of the workflow
- **pause_workflow**: Pauses or suspends a workflow instance that can later be resumed
- **resume_workflow**: Resumes a paused workflow instance
- **raise_workflow_event**: Raise an event on a workflow
- **purge_workflow**: Removes all metadata related to a specific workflow instance
- **terminate_workflow**: Terminate or stop a particular instance of a workflow
- **wait_for_workflow_completion**: Complete a particular instance of a workflow
```python
from dapr.ext.workflow import WorkflowRuntime, DaprWorkflowContext, WorkflowActivityContext
@ -34,27 +34,28 @@ eventName = "event1"
eventData = "eventData"
# Start the workflow
start_resp = d.start_workflow(instance_id=instanceId, workflow_component=workflowComponent,
workflow_name=workflowName, input=inputData, workflow_options=workflowOptions)
wf_client.schedule_new_workflow(
workflow=hello_world_wf, input=input_data, instance_id=instance_id
)
# Get info on the workflow
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
wf_client.get_workflow_state(instance_id=instance_id)
# Pause the workflow
d.pause_workflow(instance_id=instanceId, workflow_component=workflowComponent)
wf_client.pause_workflow(instance_id=instance_id)
metadata = wf_client.get_workflow_state(instance_id=instance_id)
# Resume the workflow
d.resume_workflow(instance_id=instanceId, workflow_component=workflowComponent)
wf_client.resume_workflow(instance_id=instance_id)
# Raise an event on the workflow.
d.raise_workflow_event(instance_id=instanceId, workflow_component=workflowComponent,
event_name=eventName, event_data=eventData)
wf_client.raise_workflow_event(instance_id=instance_id, event_name=event_name, data=event_data)
# Purge the workflow
d.purge_workflow(instance_id=instanceId, workflow_component=workflowComponent)
wf_client.purge_workflow(instance_id=instance_id)
# Terminate the workflow
d.terminate_workflow(instance_id=instanceId, workflow_component=workflowComponent)
# Wait for workflow completion
wf_client.wait_for_workflow_completion(instance_id, timeout_in_seconds=30)
```
{{% /codetab %}}

View File

@ -33,7 +33,7 @@ For this example, you will need:
<!-- IGNORE_LINKS -->
- [Docker Desktop](https://www.docker.com/products/docker-desktop)
<!-- END_IGNORE -->
- [.NET 6](https://dotnet.microsoft.com/download/dotnet/6.0), [.NET 8](https://dotnet.microsoft.com/download/dotnet/8.0) or [.NET 9](https://dotnet.microsoft.com/download/dotnet/9.0) installed
- [.NET 8](https://dotnet.microsoft.com/download/dotnet/8.0) installed
**NOTE:** .NET 6 is the minimally supported version of .NET for the Dapr .NET SDK packages in this release. Only .NET 8 and .NET 9
will be supported in Dapr v1.16 and later releases.

View File

@ -10,7 +10,7 @@ description: Get started with the Dapr conversation building block
The conversation building block is currently in **alpha**.
{{% /alert %}}
Let's take a look at how the [Dapr conversation building block]({{< ref conversation-overview.md >}}) makes interacting with Large Language Models (LLMs) easier. In this quickstart, you use the echo component to communicate with the mock LLM and ask it for a poem about Dapr.
Let's take a look at how the [Dapr conversation building block]({{< ref conversation-overview.md >}}) makes interacting with Large Language Models (LLMs) easier. In this quickstart, you use the echo component to communicate with the mock LLM and ask it to define Dapr.
You can try out this conversation quickstart by either:
@ -18,7 +18,7 @@ You can try out this conversation quickstart by either:
- [Running the application without the template]({{< ref "#run-the-app-without-the-template" >}})
{{% alert title="Note" color="primary" %}}
Currently, only the HTTP quickstart sample is available in Python and JavaScript.
Currently, you can only use JavaScript for the quickstart sample using HTTP, not the JavaScript SDK.
{{% /alert %}}
## Run the app with the template file
@ -50,7 +50,7 @@ git clone https://github.com/dapr/quickstarts.git
From the root of the Quickstarts directory, navigate into the conversation directory:
```bash
cd conversation/python/http/conversation
cd conversation/python/sdk/conversation
```
Install the dependencies:
@ -61,7 +61,7 @@ pip3 install -r requirements.txt
### Step 3: Launch the conversation service
Navigate back to the `http` directory and start the conversation service with the following command:
Navigate back to the `sdk` directory and start the conversation service with the following command:
```bash
dapr run -f .
@ -117,37 +117,28 @@ In the application code:
- The mock LLM echoes "What is dapr?".
```python
import logging
import requests
import os
from dapr.clients import DaprClient
from dapr.clients.grpc._request import ConversationInput
logging.basicConfig(level=logging.INFO)
with DaprClient() as d:
inputs = [
ConversationInput(content="What is dapr?", role='user', scrub_pii=True),
]
base_url = os.getenv('BASE_URL', 'http://localhost') + ':' + os.getenv(
'DAPR_HTTP_PORT', '3500')
CONVERSATION_COMPONENT_NAME = 'echo'
input = {
'name': 'echo',
'inputs': [{'message':'What is dapr?'}],
'parameters': {},
'metadata': {}
metadata = {
'model': 'modelname',
'key': 'authKey',
'cacheTTL': '10m',
}
# Send input to conversation endpoint
result = requests.post(
url='%s/v1.0-alpha1/conversation/%s/converse' % (base_url, CONVERSATION_COMPONENT_NAME),
json=input
)
print('Input sent: What is dapr?')
logging.info('Input sent: What is dapr?')
response = d.converse_alpha1(
name='echo', inputs=inputs, temperature=0.7, context_id='chat-123', metadata=metadata
)
# Parse conversation output
data = result.json()
output = data["outputs"][0]["result"]
logging.info('Output response: ' + output)
for output in response.outputs:
print(f'Output response: {output.result}')
```
{{% /codetab %}}
@ -575,7 +566,7 @@ git clone https://github.com/dapr/quickstarts.git
From the root of the Quickstarts directory, navigate into the conversation directory:
```bash
cd conversation/python/http/conversation
cd conversation/python/sdk/conversation
```
Install the dependencies:
@ -586,7 +577,7 @@ pip3 install -r requirements.txt
### Step 3: Launch the conversation service
Navigate back to the `http` directory and start the conversation service with the following command:
Navigate back to the `sdk` directory and start the conversation service with the following command:
```bash
dapr run --app-id conversation --resources-path ../../../components -- python3 app.py

View File

@ -251,7 +251,6 @@ class WorkflowConsoleApp:
if __name__ == '__main__':
app = WorkflowConsoleApp()
app.main()
```
#### `order-processor/workflow.py`
@ -276,7 +275,6 @@ wfr = WorkflowRuntime()
logging.basicConfig(level=logging.INFO)
@wfr.workflow(name="order_processing_workflow")
def order_processing_workflow(ctx: DaprWorkflowContext, order_payload_str: str):
"""Defines the order processing workflow.
@ -343,7 +341,6 @@ def notify_activity(ctx: WorkflowActivityContext, input: Notification):
logger = logging.getLogger('NotifyActivity')
logger.info(input.message)
@wfr.activity(name="process_payment_activity")
def process_payment_activity(ctx: WorkflowActivityContext, input: PaymentRequest):
"""Defines Process Payment Activity.This is used by the workflow to process a payment"""
@ -353,7 +350,6 @@ def process_payment_activity(ctx: WorkflowActivityContext, input: PaymentRequest
+' USD')
logger.info(f'Payment for request ID {input.request_id} processed successfully')
@wfr.activity(name="verify_inventory_activity")
def verify_inventory_activity(ctx: WorkflowActivityContext,
input: InventoryRequest) -> InventoryResult:
@ -377,8 +373,6 @@ def verify_inventory_activity(ctx: WorkflowActivityContext,
return InventoryResult(True, inventory_item)
return InventoryResult(False, None)
@wfr.activity(name="update_inventory_activity")
def update_inventory_activity(ctx: WorkflowActivityContext,
input: PaymentRequest) -> InventoryResult:
@ -401,8 +395,6 @@ def update_inventory_activity(ctx: WorkflowActivityContext,
client.save_state(store_name, input.item_being_purchased, new_val)
logger.info(f'There are now {new_quantity} {input.item_being_purchased} left in stock')
@wfr.activity(name="request_approval_activity")
def request_approval_activity(ctx: WorkflowActivityContext,
input: OrderPayload):
@ -413,7 +405,6 @@ def request_approval_activity(ctx: WorkflowActivityContext,
logger.info('Requesting approval for payment of '+f'{input["total_cost"]}'+' USD for '
+f'{input["quantity"]}' +' ' +f'{input["item_name"]}')
```
{{% /codetab %}}

View File

@ -7,8 +7,8 @@ description: "Define secret scopes by augmenting the existing configuration reso
description: "Define secret scopes by augmenting the existing configuration resource with restrictive permissions."
---
In addition to [scoping which applications can access a given component]({{< ref "component-scopes.md">}}), you can also scop a named secret store component to one or more secrets for an application. By defining `allowedSecrets` and/or `deniedSecrets` lists, you restrict applications to access only specific secrets.
In addition to [scoping which applications can access a given component]({{< ref "component-scopes.md">}}), you can also scop a named secret store component to one or more secrets for an application. By defining `allowedSecrets` and/or `deniedSecrets` lists, you restrict applications to access only specific secrets.
In addition to [scoping which applications can access a given component]({{< ref "component-scopes.md">}}), you can also scope a named secret store component to one or more secrets for an application. By defining `allowedSecrets` and/or `deniedSecrets` lists, you restrict applications to access only specific secrets.
In addition to [scoping which applications can access a given component]({{< ref "component-scopes.md">}}), you can also scope a named secret store component to one or more secrets for an application. By defining `allowedSecrets` and/or `deniedSecrets` lists, you restrict applications to access only specific secrets.
For more information about configuring a Configuration resource:
- [Configuration overview]({{< ref configuration-overview.md >}})

View File

@ -123,6 +123,7 @@ services:
"--app-id", "nodeapp",
"--app-port", "3000",
"--placement-host-address", "placement:50006", # Dapr's placement service can be reach via the docker DNS entry
"--scheduler-host-address", "scheduler:50007", # Dapr's scheduler service can be reach via the docker DNS entry
"--resources-path", "./components"
]
volumes:
@ -134,22 +135,19 @@ services:
... # Deploy other daprized services and components (i.e. Redis)
placement:
image: "daprio/dapr"
image: "daprio/placement"
command: ["./placement", "--port", "50006"]
ports:
- "50006:50006"
scheduler:
image: "daprio/dapr"
command: ["./scheduler", "--port", "50007"]
image: "daprio/scheduler"
command: ["./scheduler", "--port", "50007", "--etcd-data-dir", "/data"]
ports:
- "50007:50007"
# WARNING - This is a tmpfs volume, your state will not be persisted across restarts
user: root
volumes:
- type: tmpfs
target: /data
tmpfs:
size: "64m"
- "./dapr-etcd-data/:/data"
networks:
hello-dapr: null