mirror of https://github.com/dapr/docs.git
match final implementation
Signed-off-by: Jake Engelberg <jake@diagrid.io>
This commit is contained in:
parent
125eb19c9a
commit
88a0d66d44
|
@ -72,8 +72,9 @@ spec:
|
|||
|
||||
## Configuring metrics for error codes
|
||||
|
||||
You can enable additional metrics for [Dapr API error codes](https://github.com/dapr/dapr/blob/master/docs/reference/api/error_codes/) by setting `spec.metrics.recordErrorCodes` to `true`. See the specific metrics described in the [Dapr development docs](https://github.com/dapr/dapr/blob/master/docs/development/dapr-metrics.md).
|
||||
You can enable additional metrics for [Dapr API error codes](https://github.com/dapr/dapr/blob/master/docs/reference/api/error_codes/) by setting `spec.metrics.recordErrorCodes` to `true`. Dapr APIs which communicate back to its caller may return standardized error codes. As described in the [Dapr development docs](https://github.com/dapr/dapr/blob/master/docs/development/dapr-metrics.md), a new metric called `error_code_total` will be recorded, which will allow monitoring of error codes triggered by application, code, and category. See [package errorcodes](https://github.com/dapr/dapr/blob/master/pkg/messages/errorcodes/errorcodes.go) for specific codes and categories.
|
||||
|
||||
Example configuration:
|
||||
```yaml
|
||||
apiVersion: dapr.io/v1alpha1
|
||||
kind: Configuration
|
||||
|
@ -86,6 +87,21 @@ spec:
|
|||
recordErrorCodes: true
|
||||
```
|
||||
|
||||
Example metric:
|
||||
```json
|
||||
{
|
||||
app_id="publisher-app",
|
||||
category="state",
|
||||
dapr_io_enabled="true",
|
||||
error_code="ERR_STATE_STORE_NOT_CONFIGURED",
|
||||
instance="10.244.1.64:9090",
|
||||
job="kubernetes-service-endpoints",
|
||||
namespace="my-app",
|
||||
node="my-node",
|
||||
service="publisher-app-dapr"
|
||||
}
|
||||
```
|
||||
|
||||
## Optimizing HTTP metrics reporting with path matching
|
||||
|
||||
When invoking Dapr using HTTP, metrics are created for each requested method by default. This can result in a high number of metrics, known as high cardinality, which can impact memory usage and CPU.
|
||||
|
|
Loading…
Reference in New Issue