

The Future of Cloud Native Applications
with Open Application Model (OAM) and Dapr

@markrussinovich

Application models

Describes the topology of your
application and its components

The way developers write their
application to interact with other
services and data stores

Programming models

Distributed Application

Runtime (Dapr)

Open Application

Model (OAM)

https://oam.dev

State of Cloud

Native Application

Platforms

Kubernetes for applications

Kubernetes focuses on
container infrastructure, not

on applications

Application developers
need to be experts in

Kubernetes APIs

Production use of Kubernetes
requires mastery of the broader

cloud-native ecosystem

"[Kubernetes] is really hard to get into it

and understand how all the parts play

together, even for experienced people."

—Software Architect @

"A key principle for us when it comes to

choosing a platform is that we can maintain

the size of our team."
—CTO @ Handled

Cloud +
Edge

Separation
of concerns

Application
focused

Application focused

Container infrastructureOpen Application Model

Service

Job

Namespace

Secret

Volume

Endpoint

ConfigMap

VolumeAttach

CronJob

Deployment

ReplicaSet

Pod

Service
autoscaleingress

Task Worker
cron canary

Describes application

components and operations as

first-class concepts without

having to stitch together

individual container primitives

Flexible application modeling

supports a wide range of

application architectures

Small and simple applications

are easy, large and complex

applications are manageable

Allows application developers

to focus on their code in

a platform-neutral setting to

deliver business value

Application operators use

powerful and extensible

operational traits consistently

across platforms and

environments

Infrastructure operators can

configure their environments

to satisfy any unique operating

requirements

Separation of concerns

Application

Developer/Architect

Traffic

Management

Canary

Blue/Green

A/B

Auto

Scaling
Identity

Application

Operator

Cloud or Edge

Environment

Infrastructure

Operator

Code and

Containers

Deployed with: Azure DevOps Pipelines GitHub Actions Azure Arc

Cloud + Edge

A standard, platform-agnostic

application definition for any

platform in any environment

Consistent application modeling

for small devices, Kubernetes

on-premises or cloud, and fully-

managed cloud environments

Extendable by design to

leverage the native APIs, tools,

and unique features of platforms

that users know and love

IoT and EdgeMulti-cloud On-premises

Open Application Model

Open Application Model

IoT and EdgeMulti-cloud On-premises

Application Application configurations

Code and Containers

Application OperatorApplication Developer/Architect

Traffic

Management

Canary Blue/

Green A/B
Auto Scaling Identity

Infrastructure Operator

Application Developer/Architect

- Application Scopes

- Parameters

1

Workload Type

Parameters

- Application Scopes

- Parameters

Application

Application Scopes

Parameters

Infrastructure

Operator

- Application Scopes

- Parameters

Traits

Trait Type

Parameters

Application Operator

- Application Scopes

- Parameters

Application

Configuration

Application Reference

Configured Parameters

Deployment Scopes

Configured Traits

Component

1

- Application Scopes

- Parameters

Component

Component

B

Component

C

Component

D

1

Where developers declare the

operational characteristics of

the code they deliver in

infrastructure neutral terms.

Component

Component

A

Health Scope X

Network Scope YNetwork Scope X

Component

B

Component

C

Component

D

Component

A

ApplicationScope

A way to loosely couple

components into groups with

common characteristics.

Application Scope

Application

Health Scope X

Application

Where developers group

components together into a single,

deployable unit and specifies

cross-component info, such as

health scopes.

Application

Component

B

Component

C

Component

D

Component

A

Component

Trait

traits

manual-scaler

ingress

For assigning operational features

to instances of components.

Trait

Application Configuration

Application

Health Scope X

Network Scope YNetwork Scope X

Component

B

Component

C

Component

D

Trait Trait Trait

Component

A

Trait

ApplicationConfiguration

name: manual-scaler

Defines a configuration of an

application, its traits, and additional

scopes, such as network scopes.

Application
Configuration

Kubernetes
Cluster

rudr

HELM chart

OAM
app

Kubernetes
resources

HELM CLIkubectl

Azure DevOps

GitHub Actions

rudr

Application developers can focus on

business value, not on container primitives

and plumbing

CRDs combine high-level application

modeling with familiar Kubernetes concepts

Infra operators continue to use familiar

Kubernetes infrastructure, APIs, and

domain knowledge

Build and operate cloud-native

applications on the leading open

source orchestrator

Open Application

Model on Kubernetes

OAM

Application

YAML

Application

Component Component

Deploying an OAM

application to rudr

D E M O

Enterprise Distributed Application Service (EDAS)
OAM-based PaaS implementation

Empower app developers to focus

on building and delivering apps

without concerning operations

Provide manageability of CRDs,

consistency of app model,

portability of app profiles

Give platform team flexibility to

choose and operate the infra

tools in their domain knowledge

by adopting OAM

ROS-OAM

Operator
OpenKruise

Monitoring Logging ScalingRollout Ingress

Elastisearch

Operator

Prometheus

Operator

ROS
(Alibaba Cloud Resources)

Stateless Component

Kubernetes Cluster

https://dapr.io

State of Enterprise

Developers

What is holding back

micro-service development?

Hard to incrementally migrate

from existing code to a

microservices architecture

Programming model runtimes

have narrow language

support and tightly controlled

feature sets

Runtimes only target specific

infrastructure platforms with

limited code portability across

clouds and edge

Microservice
building blocks

Cloud +
Edge

Sidecar
architecture

Sidecar architecture
Standard APIs accessed over http/gRPC protocols from user service code

e.g. http://localhost:3500/v1.0/state/inventory

Runs as local “sidecar library” dynamically loaded at runtime for each service

Service-to-

service

invocation

State

management

Publish

and

subscribe

Resource

bindings

and triggers

Actors Distributed

tracing

Extensible

HTTP API gRPC API

Application code

Dapr self-hosted
Sidecar architecture

State stores

Publish and subscribe

Resource bindings

Scanning
for events

Application

Dapr APIDapr API

Messaging

Load and
save state

Service

code B

Service

code A

Input/output

1
Components

Dapr Kubernetes-hosted
Sidecar architecture

Component management

Deploys and manages Dapr

Any cloud or edge infrastructure

Publish and

subscribe

State stores

Resource bindings
Input/output

Pod

C O N T A I N E R

Placement

Pod

C O N T A I N E R

Sidecar injector

Pod

C O N T A I N E R

Operator

Pod

C O N T A I N E R

Application code

1

Pod

Update component
changes to runtime

Updates actor
partition placement

Injects Dapr runtime

Components

Dapr Kubernetes-hosted
Sidecar architecture

Component management

Deploys and manages Dapr

Any cloud or edge infrastructure

Publish and

subscribe

State stores

Resource bindings
Input/output

Pod

C O N T A I N E R

Placement

Pod

C O N T A I N E R

Sidecar injector

Pod

C O N T A I N E R

Operator

Dapr API

HTTP or gRPC

Use components

C O N T A I N E R

Sidecar

C O N T A I N E R

Application code

Service-to-

service

invocation

State

management

Publish

and

subscribe

Resource

bindings

and triggers

Actors Distributed

tracing

Extensible

Build apps using any language with any framework

Any cloud or edge infrastructure

HTTP API gRPC API

Application code

Any code or framework…

Microservices written in

Cloud + Edge

Distributed

tracing

See and measure

the message calls

across components

and networked

services

Actors

Encapsulate code

and data in

reusable actor

objects as a

common

microservices

design pattern

Resource

bindings

and triggers

Trigger code through

events from a large

array of inputs

Output bindings to

external resources

including databases

and queues

Publish

and

subscribe

Secure, scalable

messaging

between services

State

management

Create long

running, stateless

and stateful

services

Microservice building blocks

Service-to-

service

invocation

Perform direct,

secure, service-

to-service

method calls

App

“myApp”

{
"name": "Tatooine"

}

Get
http://localhost:3500/v1.0/state/planet

Post
http://localhost:3500/v1.0/state

[{
"key": "weapon",
"value": "DeathStar"

}, {
"key": "planet",
"value": {

"name": "Tatooine"
}

}]

key Value

myApp-weapon "DeathStar"

myApp-planet {

"name": "Tatooine"
}

State store of your choice

State management
Microservice building blocks

{
"data":
{

"sku":"v100",
"quantity":"50"

}
}

Post
http://localhost:3500/v1.0/bindings/myDatabase

Resource bindings: Output
Microservice building blocks

App

“myApp”

DynamoDBRedisEvent HubsCosmosDBKafkaTwilio

Redis

DynamoDB

Kafka

Twilio

Event Hubs

CosmosDB

“frontend”

“cart”

Post
http://localhost:3500/v1.0/invoke/cart/method/checkout

{
"user":"johndoe",
"cart":"0001"

}

Post
http://10.0.0.2:8000/checkout

{
"user":"johndoe",
"cart":"0001"

}

Service invocation
Microservice building blocks

App

Get / Post
http://localhost:8000/trigger

{
"user":"johndoe"

}

RedisSQSEvent HubsKafka

Redis

Kafka

SQS

Event Hubs

Resource triggers: Input
Microservice building blocks

SubscribePublish

Post
http://localhost:3500/v1.0/publish/

"topic":"order",
"data":{

"user":"johndoe",
"item":"ZeroDay"

},

“cart”

Publish and subscribe
Microservice building blocks

“shipping”

Post
http://10.0.0.5:8005/order

"data":{
"user":"johndoe",
"item":"ZeroDay"

}

“email”

Post
http://10.0.0.4:8004/order

App InsightsDatadogInstanaJaegerSignalFXPrometheus+ many more

App Insights

+ many more

Datadog

Instana

Jaeger

SignalFX

Prometheus

Distributed tracing and diagnostics
Microservice building blocks

App

“frontend”

App

“backend”

OpenCensus

Distributed Calculator

D E M O

Functions with Dapr

Event-driven Stateless Easy replication and sharing

Input/Triggers
App

Output/Bindings

Functions with Dapr

D E M O

Host/Pod

Virtual Actors with Dapr

Stateful, objects of

storage and compute

Dapr Actor features:

Distribution and failover

Turn-based concurrency

State management

Timers

Reminders
Host/Pod

Video Game
Enemy

Pod Y

Actor C

Actor D

Pod X

Actor A

Actor B

Post
http://localhost:3500/v1.0/actors/MyActors/A/method/update

{
"speed":"1"

}

Actors
Microservice building blocks

App

Post
http://10.0.0.6:6004/update

{
"speed":"1"

}

Invoke

Actor

Pod Y

Actor C

Actor D

Pod X

Actor A

Actor B

Post
http://localhost:3500/v1.0/actors/MyActors/C/method/update

{
"speed":"3"

}

Actors
Microservice building blocks

App

Post
http://10.0.0.6:6004/update

{
"speed":"1"

}

Invoke

Actor

Allocate

Post
http://10.0.0.7:6005/update

{
"speed":"3"

}

Cloud Native Parking Garage

D E M O

Azure Sphere

Microsoft

building 37

Microsoft

building 99

rudr

github.com/oam-dev

1

Community

github.com/dapr

rudr

github.com/oam-dev

Roadmap
1

github.com/dapr

