

Microsoft Ignite

OAM, dapr, and rudr The future of cloud native applications

Mark Russinovich CTO, Microsoft Azure

BRK3098

Agenda

Open Application Model dapr: Distributed Application Platform Building Cloud Scale, Hybrid Applications

Application Models

Describes the topology of your application and its components

Programming Models

The way developers write their application to interact with other services and data stores

Open Application Model (OAM)

Platform agnostic application model

Open Application Model

dapr: Distributed Application Runtime

Building blocks for building scalable distributed apps

Open Application Model

Application model for Cloud and Edge

State of Cloud Native Application Platforms

The cloud is going serverless, but K8s is the infrastructure on-prem and on-edge

App developers need to know and code for each infrastructure they deploy to

Kubernetes for applications

Kubernetes focuses on container infrastructure, not on applications

{ }

Application developers need to be experts in Kubernetes APIs

Production use of Kubernetes requires mastery of the broader cloud-native ecosystem

"[Kubernetes] is really hard to get into it and understand how all the parts play together, even for experienced people."

– Software Architect @ Crisp

"A key principle for us when it comes to choosing a platform is that we can maintain the size of our team."

– CTO @ Handled.io

OAM: Platform agnostic application model The open application model for cloud and edge

Application focused

Focuses on developers and applications, not on container infrastructure

Separation of concerns

Clearly defined roles for application developers, application operators, and infrastructure operators

Standard and consistent application model for cloud, on-prem, and small-edge devices

Application focused

Describes application components and operations as first-class concepts without having to stitch together individual container primitives

Flexible application modeling supports a wide range of application architectures

Small and simple applications are easy, large and complex applications are manageable

Service ingress autoscale Task cron Worker canary

Open Application Model

Container infrastructure

Separation of concerns

Allows application developers to focus on their code in a platform-neutral setting to deliver business value

Application operators use powerful and extensible operational traits consistently across platforms and environments

Infrastructure operators can configure their environments to satisfy any unique operating requirements

Cloud + Edge

A standard, platform-agnostic application definition for any platform in any environment.

Consistent application modeling for small devices, Kubernetes on prem or cloud, and fully-managed cloud environments.

Extendable by design to leverage the native APIs, tools, and unique features of platforms that users know and love

Open Application Model

rudr: Open Application Model on Kubernetes

Build and operate cloud-native applications on the leading open source orchestrator

Application developers can focus on business value, not on container primitives and plumbing

CRDs combine high-level application modeling with familiar Kubernetes concepts

Infra operators continue to use familiar Kubernetes infrastructure, APIs, and domain knowledge

Open Application Model

Where developers declare the operational characteristics of the code they deliver *in infrastructure neutral terms*.


```
apiVersion: core.oam.dev/v1alpha1
kind: Com
metadata:
  name: oamfrontend
  version: "1.0.0"
  description: Simple OAM app
spec:
  workloadType: core.oam.dev/vlalphal.Server
  os: linux
  arch: amd64
  parameters:
    - name: oam texture
      type: string
      required: true
      default: texture.jpg
  containers:
    - name: frontend
      image: ignite2019/oamhwfrontend:latest
      env:
        - name: OAM TEXTURE
          value: texture.jpg
          fromParam: oam texture
      ports:
        - containerPort: 8001
          name: http
          protocol: TCP
```


A way to loosely couple components into groups with common characteristics.

apiVersion: core.oam.dev/vlalpha1 kind: metadata: name: network annotations: version: v1.0.0 description: "network boundary that a group of components reside in" spec: type: core.oam.dev/v1.NetworkScope allowComponentOverlap: false parameters: - name: network-id description: The id of the network type: string required: Y - name: subnet-id description: The id of the subnet type: string required: Y - name: internet-gateway-type description: The type of the gateway. type: string required: N

Where developers group components together into a single, deployable unit and specifies cross-component info, such as health scopes.

apiVersion: core.oam.dev/vlalpha1 kind: Application metadata: name: oam-helloworld-app spec: components: - name: <u>oamfrontend</u> - name: oambackend traits: - name: scaler parameterValues: - name: min value: 1 - name: max value: 50 scopes:

- name: oam-be-fe-metrics
 type: core.oam.dev/v1.HealthScope
 parameters:
 - name: metrics-endpoint
 protocol: https
 path: /metrics

For assigning operational features to instances of components.

apiVersion: core.oam.dev/vlalpha1 kind: Trait metadata: name: ManualScaler annotations: version: v1.0.0 spec: appliesTo: - core.oam.dev/v1alpha1.Server - core.oam.dev/v1alpha1.Worker - core.oam.dev/v1alpha1.Task properties: type: object properties: {"\$schema": "http://jsonschema.org/draft-07/schema#", "type": "object", "required": ["replicaCount], "properties": { "replicaCount": { "type": "integer", "minimum": 0 }}

Defines a configuration of an application, its traits, and additional scopes, such as network scopes.

apiVersion: core.oam.dev/v1alpha1
kind: ApplicationConfiguration
metadata:
 name: oam-helloworld
spec:
 components:
 - name: oamfrontend

instanceName: oam-fe1
parameterValues:

- name: oam_texture
 value: aks

traits:

- name: ingress
 parameterValues:
 - name: hostname
 - value: aks.azureocto.com
 - name: path
 value: /
 - name: service_port
 value: 8001
- name: oambackend instanceName: oam-be1

DEMO

Deploying an OAM application to rudr

Distributed Application Runtime

Portable, event-driven, runtime for building distributed applications across cloud and edge

State of Enterprise Developers

Being asked to develop resilient, scalable, microservice-based apps

Functions and Actors are powerful programming models

They write in many languages

They want to leverage existing code

What is holding back serverless development?

Frequently need to incrementally migrate from existing and legacy code

Serverless runtimes have narrow language support with tightly controlled feature sets

Serverless runtimes don't have composable and incrementally adoptable equivalents that can run anywhere

Introducing Dapr

A portable, event-driven, serverless runtime for building distributed applications across cloud and edge

Sidecar Architecture

Developer first, standard APIs used from any programming language or framework

Microservice Building Blocks

Make it easy for developers to create microservice applications without being an expert in distributed systems, including migrating existing code

Runs on multiple environments for cloud, onprem, and small-edge including any Kubernetes

Sidecar architecture

Standard APIs accessed over http/gRPC protocols from user service code e.g. http://localhost:3500/v1.0/invoke/myapp/method/neworder

Dapr runs as local "side-car library" dynamically loaded at runtime for each service

Dapr: Build apps using any language with any framework

Dapr self-hosted

Dapr Kubernetes-hosted

Microservice Building Blocks

State Management

Create long running, stateless and stateful services

Service Invocation & Fault Handling

Perform direct, secure, service-toservice method calls

Resource Bindings

Trigger code through events from a large array of input and output bindings to external resources including databases and queues

Publish & Subscribe

Secure, scalable messaging between services

Actors

Encapsulate code and data in reusable actor objects as a common microservices design pattern

Distributed Tracing & Diagnostics

See and measure the message calls across components and networked services

State management

GET

http://localhost:3500/v1.0/state/planet

DEMO

Dapr State Management and Bindings

Service Invocation

Input bindings

SQS

 $\langle \mathbf{\Phi} \rangle$

Арр
Publishing & Subscribing

Publish

Subscribe

0

Event driven

Stateless

Easy replication/scaling

Functions with Dapr

0

Virtual Actors with Dapr

Stateful, objects of storage and compute

Dapr Actor Features:

- Distribution & failover
- Turn-based concurrency
- State management
- Timers
- Reminders

Actors with Dapr

Diagnostics with Dapr

Building Cloud Scale, Hybrid Applications

Retail PoS Application

Built with Stateless and Stateful Services

Retail PoS Application

Built with Stateless and Stateful Services

Retail Point of Sale (PoS) Application

Incrementally adoptable

Warehouse Robotics Orchestration

Learn more and contribute

Open Application Model

openappmodel.io

Thank you

