Microsoft
Ignite

=% Microsoft

OAM, dapr, and rudr

The future of cloud native applications

Mark Russinovich
CTO, Microsoft Azure

@markrussinovich

BRK3098

Agenda

Open Application Model
dapr: Distributed Application Platform
Building Cloud Scale, Hybrid Applications

Application Models

Describes the topology
of your application and
Its components

Programming Models

The way developers write their
application to interact with
other services and data stores

Open Application dapr: Distributed
Model (OAM) Application Runtime

Platform agnostic application model Building blocks for building scalable

distributed apps
() J
Open
Application daPr

Model

()

Open
Application
Model

Application model for
Cloud and Edge

State of Cloud The cloud is going serverless, but K8s is the
Native infrastructure on-prem and on-edge

App“cation App developers need to know and code for
Platforms each infrastructure they deploy to

Kubernetes for applications

O {) R

Kubernetes focuses on Application developers Production use of Kubernetes
container infrastructure, need to be experts in requires mastery of the broader
not on applications Kubernetes APIs cloud-native ecosystem
"[Kubernetes] is really hard to get into it "A key principle for us when it comes
and understand how all the parts play to choosing a platform is that we can
together, even for experienced people.” maintain the size of our team."

— Software Architect @ Crisp — CTO @ Handled.io

OAM: Platform agnostic application model

The open application model for cloud and edge

Application focused

..=+ Separation of concerns

@ Cloud + Edge

Focuses on developers and applications, not on
container infrastructure

Clearly defined roles for application developers,
application operators, and infrastructure operators

Standard and consistent application model for
cloud, on-prem, and small-edge devices

Application focused =

Describes application components and operations as first-class concepts without having
to stitch together individual container primitives

Flexible application modeling supports a wide range of application architectures

Small and simple applications are easy, large and complex applications are manageable

Open Application Model Container infrastructure

- 1 Deployment Service Endpoint
Service B
ingress autoscale]
’ ReplicaSet Namespace ConfigMap
Pod Secret VolumeAttach

Worker “

canary Job Volume CronlJob

Separation of concerns ‘a

Allows application developers to focus on their code in a platform-neutral setting to deliver business value

Application operators use powerful and extensible operational traits consistently across platforms
and environments

Infrastructure operators can configure their environments to satisfy any unique operating requirements

Application Application Infrastructure
Developer/Architect Operator Operator
. Canary
Codg & Traffic Blue/Green Auljco Rl Clou.d or Edge
Containers Management A/B Scaling Environment

Deployed with: f Azure DevOps Pipelines GitHub Actions

Cloud + Edge 0=

A standard, platform-agnostic application definition for any platform in any environment.

Consistent application modeling for small devices, Kubernetes on prem or cloud, and
fully-managed cloud environments.

Extendable by design to leverage the native APIs, tools, and unique features of platforms
that users know and love

Open Application Model

BT Microsoft Azure 3

oo 2 hEO
N Alibaba Cloud

Multi-Cloud loT and Edge On-Premises

Application Application
Developer/Architect Operator

Code & Traffic ICanary Auto denti
Containers Management Bue/(/GE:een Scaling Identity

Open
Appl ication Application Application configurations

Model

B Microsoft Azure >

Infrastructure aws &) "“"""‘"’ P % h E

Operator Alibaba Cloud

OAM

Multi-Cloud loT and Edge On-Premises

rudr: Open Application A

Model on Kubernetes Appliction

Docker

OAM

Build and operate cloud-native applications
on the leading open source orchestrator

f kubectl

Application developers can focus on business
value, not on container primitives and plumbing

CRDs combine high-level application modeling

with familiar Kubernetes concepts rudr
Infra operators continue to use familiar

Kubernetes infrastructure, APIs, and Application
domain knOWIedge Component Component

PYY YUY

Kubernetes Cluster

HELM chart

OAM Kubernetes
app resources

\\’4
Helm CLI

redis Ticera
kRabbit
@Grqfqnq

Application
Operator

Application
Developer/
Architect

Open Application Model

Application Configuration

Application Reference Deployment Scopes
Configured Parameters Configured Traits
Application
Application Scopes Traits
Parameters Trait Type
Parameters
Component

Workload Type

Parameters

Infrastructure
Operator

@ Component

Where developers declare the
operational characteristics of the
code they deliver in infrastructure
neutral terms.

Component
A

O =

apiVersion: core.oam.dev/vlalphal
kind:
metadata:
name: oamfrontend
version: "1.0.0"
description: Simple OAM app
spec:
workloadType: core.oam.dev/vlalphal.Server
os: linux
arch: amdé64
parameters:
- name: oam_texture
type: string
required: true
default: texture.jpg
containers:
- name: frontend
image: ignite2019/ocamhwfrontend:latest
env:
— name: OAM TEXTURE
value: texture.]jpg
fromParam: oam_ texture

ports:
- containerPort: 8001
name: http

protocol: TCP

e Application Scope

A way to loosely couple
components into groups with
common characteristics.

Network Scope X Network Scope Y
Component Component Component Component
A B C D

Health Scope X

apiVersion: core.oam.dev/vlalphal
kind:
metadata:
name: network
annotations:
version: v1.0.0
description: "network boundary that a
group of components reside in"
spec:
type: core.oam.dev/vl1.NetworkScope
allowComponentOverlap: false
parameters:
- name: network-id
description: The id of the network
type: string
required: Y
- name: subnet-id
description: The id of the subnet
type: string
required: Y
- name: internet-gateway-type
description: The type of the gateway.
type: string
required: N

@ Application

Where developers group
components together into a single,
deployable unit and specifies
cross-component info, such as
health scopes.

Application

Component Component Component Component
A B C D

Health Scope X

apiVersion: core.oam.dev/vlalphal
kind:
metadata:
name: oam-helloworld-app
spec:
components:

- name: oamfrontend

- name: oambackend
traits:

- name: scaler
parameterValues:
- name: min
value: 1
= name: max
value: 50
scopes:

- name: oam-be-fe-metrics
type: core.oam.dev/vl1.HealthScope
parameters:

- name: metrics-endpoint
protocol: https
path: /metrics

. apiVersion: core.oam.dev/vlalphal
Trait kind:
metadata:
name: ManualScaler
annotations:

. . . version: v1.0.0
For assigning operational features spec:
appliesTo:
- core.oam.dev/vlalphal.Server
- core.oam.dev/vlalphal.Worker
- core.oam.dev/vlalphal.Task

to instances of components.

properties:
type: object
properties: |
{"$schema": "http://json-
Component schema.org/draft-07/schema#",
"type": "object",
"required": ["replicaCount],
"properties": ({
=== =—=========-= = "replicaCount": ({

| Trait ' "type": "integer",
"minimum": 0 }}}

apiVersion: core.oam.dev/vlalphal

e Application kind:
Configuration '

name: oam-helloworld

spec:
components:
Defines a configuration of an - name: oamfrontend
. instanceName: oam-fel
application, its traits, and additional parametervValues:
scopes, such as network scopes. - name: oam_texture
value: aks
traits:
Application Configuration - name: ingress
parameterValues:
Application - name: hostname
value: aks.azureocto.com
Network Scope X Network Scope Y - name: path
value: /

Component Component Component Component .
— name: service port

value: 8001
- name: oambackend
Health Scope X instanceName: oam-bel

DEMO

Deploying an OAM
application to rudr

dC-I-PI‘

Distributed Application Runtime

Portable, event-driven, runtime for
building distributed applications across
cloud and edge

Being asked to develop resilient, scalable,
microservice-based apps

State of .

. Functions and Actors are powerful
Enterprlse programming models
DEVE'OPEI‘S They write in many languages

They want to leverage existing code

What is holding back
serverless development?

2 & -

Frequently need to Serverless runtimes have Serverless runtimes don't have
incrementally migrate from narrow language support with composable and incrementally
existing and legacy code tightly controlled feature sets adoptable equivalents that can

run anywhere

Introducing Dapr

A portable, event-driven, serverless runtime for building
distributed applications across cloud and edge

- - Developer first, standard APIs used from any
Sidecar Architecture programming language or framework
N ‘ Make it easy for developers to create microservice
T Microservice Building Blocks applications without being an expert in distributed

systems, including migrating existing code

Runs on multiple environments for cloud, on-
@ Cloud + Edge 0

prem, and small-edge including any Kubernetes

Sidecar architecture

Standard APIs accessed over http/gRPC protocols from user service code
e.g. http://localhost:3500/v1.0/invoke/myapp/method/neworder

Dapr runs as local “side-car library” dynamically loaded at runtime for each service

Service-to-service State
invocation management

< .> HTTP/gRPC Publish and subscribe
Application ecource
code bindings & triggers Actors

Distributed tracing Extensible...

Dapr: Build apps using any language with any framework

Microservice application

Services written in

égr{\:vc:)erlf.r. = neoe dQ , P pg’[hon .NET Core @ -ﬁ)Java Functions €7+

HTTP/gRPC APlIs

Resource
bindings &
triggers

Service-to-
service
invocation

Distributed
tracing

NEIE Publish and

: Extensible...
management subscribe

cla'-l':r

Any cloud or edge infrastructure

Dapr self-hosted

=k €
r-——-=> Resource bindings =" = @ ..others <€ ———-—-— -

Scanning for events : EventHub Kafka AWSSQS GCP pub/sub :
| |
1 1
| . . |
! Application '
1 |
v \
oed AN
Dapr API Dapr API
Service Service
code A code B
Messaging .
] Publish and |
~ subscribe redis ~.others <
Load and
save state . g , e
= 3 . <
State stores . redis ...others

AWS DynamoDB ~ CosmosDB

Dapr Kubernetes-hosted

Deploys and .'
manages Dapr -
I

Pod

CONTAINER

L
dapr
Placement

S

Use components

Any cloud or edge infrastructure

Vv
Pod Pod
CONTAINER CONTAINER Component
m m management
dapr dapr >
Sidecar Injector Operator
Updates actor Injects Dapr Update component
partition placement runtime changes to runtime
\24
CONTAINER POd CONTAINER
d'.' Dapr AP 45
apr ,
: HTTP or gRPC Service code
Sidecar
N
7

Components

Input/output bindings

= &

EventHub Kafka AWS GCP
SQSs pub/sub

State stores

e £ @

AWS CosmosDB redls
DynamoDB
Publish and e
subscribe redis

o .

.others

...others

...others

Microservice Building Blocks

) (2

State Management

Create long running, stateless
and stateful services

Ir:

Publish & Subscribe

Secure, scalable messaging
between services

T

Service Invocation & Fault Handling

Perform direct, secure, service-to-
service method calls

o,
r S
Actors

Encapsulate code and data in
reusable actor objects as a common
microservices design pattern

=

Resource Bindings

Trigger code through events from a
large array of input and output
bindings to external resources
including databases and queues

4N

u 4

Distributed Tracing & Diagnostics

See and measure the message calls
across components and networked
services

State management

GET
http://localhost:3500/v1.0/state/planet
{
"name": "Tatooine"
} key Value
<{}> myApp-weapon "DeathStar"
) App) myApp-planet {
myApp POST "name": "Tatooine"
}

http://localhost:3500/v1.0/state
State store of your choice

[{
"key": "weapon",
"value": "DeathStar"
b Ao
"key": "planet",
"value": {
"name": "Tatooine"
}

1

Output bindings e

o— é Redis

o— : Event Hubs

.—l . DynamoDBI

&

App

POST
http://localhost:3500/v1.0/bindings/inventory

{..data.., o— f?/: CosmosDB
{

"sku":"v1e0",

"quantity":"50"
}} o— §€ Kafka

o— E“ SQS

DEMO

Dapr State Management
and Bindings

Service Invocation

POST
http://localhost:3500/v1.0/invoke/cart/method/checkout

{

"user":"johndoe",
"cart":"o001"

}

&

“frontend”

&

“cart” <

POST
http://10.0.0.2:8000/checkout

{

"user":"johndoe",
"cart":"0001"

}

Input bindings .

GET/POST
é Redis http://localhost:8000/trigger
{
"user":"johndoe"
}
- Event Hubs —@
‘ g Kafka |l @ <¢>
| App
§€ Kafka —@
& sQs —@

Publishing & Subscribing i

POST
http://10.0.0.4:8004/order

&

POST N
http://localhost:3500/v1.0/publish/ “email”
"topic":"order",
"data":{
"user":"johndoe",
"item":"ZeroDay" "data":{
}s POST "user":"johndoe",
http://10.0.0.5:8005/order } "item":"ZeroDay"
&) = W
7 . 7

“cart” “shipping”

redis

Publish Subscribe

Functions with Dapr

Event driven
Stateless

Easy replication/scaling

k“ Input/Trigger

&)

App

Output

I

DEMO

Functions with Dapr

Virtual Actors
with Dapr

Stateful, objects of
storage and compute

Dapr Actor Features:
» Distribution & failover
 Turn-based concurrency
- State management
« Timers
» Reminders

Video Game

Enemy
X pos Difficulty
Y pos Spawn()
Z pos
Weapons
Attack()

Host/Pod

Virtual Actors with Dapr /1000 L0004 undate Pod X

&
{ Actor A
“speed":“1"
}
&
POST
http://localhost:3500/v1.0/actors/MyActors/A/method/update .
{
“speed":“1"
}
Invoke
<'Q'> Actor
App Co%
JL Get Actor)
da Pr Location

Placement
Service

Virtual Actors with Dapr

POST
http://localhost:3500/v1.0/actors/MyActors/C/method/updateName
{
“speed" :“3"
}
Invoke
<'Q'> Actor
App
POST

http://10.0.0.7:6005/update

JL Get Actor
da Pr Location {

Placement }
Service

ﬂ'speedll :r{3||

&

Actor A

o%

Actor C

Allocate

Pod X

&

Actor B

Pod Y

&)

DEMO

Actors with Dapr

Distributed Tracing and Diagnostics ®— @ Appinsights

o— ﬁ“ Datadog

&

App
“frontend”

o— Q Instana

_@OpenTelemetry (: + many more

o SignalFX

&

App

o— g Prometheus
“backend”

o— + many more

DEMO

Diagnostics with Dapr

Building Cloud Scale,
Hybrid Applications

Retail PoS Application

Built with Stateless and Stateful Services

Admin Dashboard Inventory Service
Service Invocation
Hostname Q— ﬂ@dc , ~ @ python
s " Pub/Sub
N

Service
Ingress Invocation

\%

f, th Actor Invocation J @
Scaling :) pg on Actors

Checkout Console Register Actors

N

—C

—C

—C

Storage
Binding

Event
Binding

State Binding

Retail PoS Application

Built with Stateless and Stateful Services

Dev/Test

dev.mysite.com O—
IpOp Azure
Azure Load Balancer D— OpOp TP Kubernetes
il Service
2 Nodes O—
Production
mysite.com O
y Azure
NGINX D— ‘ Stack
25 Nodes Edge

b4

5 b

o0—

CosmosDB
EventHubs

Azure Redis

SQL
Kafka
Redis

OAM Application

—C
—C
—C

DEMO

Retail Point of Sale (PoS)
Application

Incrementally adoptable

Distributed
tracing

Actors Extensible...

Warehouse Robotics

Incremental extensions to a legacy system

&

Scanner

&

Robot

&

Workorder
Manager

&

Route
Manager

Warehouse Robotics

Incremental extensions to a legacy system

&

Scanner

&

Robot

&

Workorder
Manager

&

Route
Manager

Warehouse Robotics

Incremental extensions to a legacy system

& |
Scanner

&

Smart
Contract

&
Robot

&

Workorder
Manager

&

Route
Manager

Warehouse Robotics

Incremental extensions to a legacy system

&

Scanner

&

Robot

&

Smart
Contract

Messaging

&

Workorder
Manager

&

Route
Manager

Warehouse Robotics

Incremental extensions to a legacy system

&

Scanner

&

Robot

&

Smart
Contract

Messaging

Object
Detection

&

Workorder
Manager

&

Route
Manager

DEMO

Warehouse Robotics
Orchestration

®

Learn more and contribute

()
Open da--Pr

Application
Model

openappmodel.io dapr.io

Thank you

=% Microsoft

© Copyright Microsoft Corporation. All rights reserved.

