Adds generic ring

Adds a generic implementation of the stdblib ring buffer so that each
ring `Value` can be a concrete type.
https://pkg.go.dev/container/ring

Adds `Len() int` and `Keys() []K` func to the generic Map cmap.

Changes `events/queue` Processor `Queueable` to be an exported type. No
functional change, but consumed types should be exported.

Signed-off-by: joshvanl <me@joshvanl.dev>
This commit is contained in:
joshvanl 2024-11-12 09:13:21 -03:00
parent d37dc603d0
commit 2423331f9c
4 changed files with 163 additions and 8 deletions

View File

@ -26,6 +26,8 @@ type Map[K comparable, T any] interface {
LoadAndDelete(key K) (T, bool)
Range(fn func(key K, value T) bool)
Store(key K, value T)
Len() int
Keys() []K
}
type mapimpl[K comparable, T any] struct {
@ -79,3 +81,19 @@ func (m *mapimpl[K, T]) Store(k K, v T) {
defer m.lock.Unlock()
m.m[k] = v
}
func (m *mapimpl[K, T]) Len() int {
m.lock.RLock()
defer m.lock.RUnlock()
return len(m.m)
}
func (m *mapimpl[K, T]) Keys() []K {
m.lock.Lock()
defer m.lock.Unlock()
keys := make([]K, 0, len(m.m))
for k := range m.m {
keys = append(keys, k)
}
return keys
}

View File

@ -22,7 +22,7 @@ import (
)
// Processor manages the queue of items and processes them at the correct time.
type Processor[K comparable, T queueable[K]] struct {
type Processor[K comparable, T Queueable[K]] struct {
executeFn func(r T)
queue queue[K, T]
clock kclock.Clock
@ -36,7 +36,7 @@ type Processor[K comparable, T queueable[K]] struct {
// NewProcessor returns a new Processor object.
// executeFn is the callback invoked when the item is to be executed; this will be invoked in a background goroutine.
func NewProcessor[K comparable, T queueable[K]](executeFn func(r T)) *Processor[K, T] {
func NewProcessor[K comparable, T Queueable[K]](executeFn func(r T)) *Processor[K, T] {
return &Processor[K, T]{
executeFn: executeFn,
queue: newQueue[K, T](),

View File

@ -18,8 +18,8 @@ import (
"time"
)
// queueable is the interface for items that can be added to the queue.
type queueable[T comparable] interface {
// Queueable is the interface for items that can be added to the queue.
type Queueable[T comparable] interface {
comparable
Key() T
ScheduledTime() time.Time
@ -29,13 +29,13 @@ type queueable[T comparable] interface {
// It acts as a "priority queue", in which items are added in order of when they're scheduled.
// Internally, it uses a heap (from container/heap) that allows Insert and Pop operations to be completed in O(log N) time (where N is the queue's length).
// Note: methods in this struct are not safe for concurrent use. Callers should use locks to ensure consistency.
type queue[K comparable, T queueable[K]] struct {
type queue[K comparable, T Queueable[K]] struct {
heap *queueHeap[K, T]
items map[K]*queueItem[K, T]
}
// newQueue creates a new queue.
func newQueue[K comparable, T queueable[K]]() queue[K, T] {
func newQueue[K comparable, T Queueable[K]]() queue[K, T] {
return queue[K, T]{
heap: new(queueHeap[K, T]),
items: make(map[K]*queueItem[K, T]),
@ -122,14 +122,14 @@ func (p *queue[K, T]) Update(r T) {
heap.Fix(p.heap, item.index)
}
type queueItem[K comparable, T queueable[K]] struct {
type queueItem[K comparable, T Queueable[K]] struct {
value T
// The index of the item in the heap. This is maintained by the heap.Interface methods.
index int
}
type queueHeap[K comparable, T queueable[K]] []*queueItem[K, T]
type queueHeap[K comparable, T Queueable[K]] []*queueItem[K, T]
func (pq queueHeap[K, T]) Len() int {
return len(pq)

137
ring/ring.go Normal file
View File

@ -0,0 +1,137 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ring implements operations on circular lists.
// Edited to be generic.
package ring
// A Ring is an element of a circular list, or ring.
// Rings do not have a beginning or end; a pointer to any ring element
// serves as reference to the entire ring. Empty rings are represented
// as nil Ring pointers. The zero value for a Ring is a one-element
// ring with a nil Value.
type Ring[T any] struct {
next, prev *Ring[T]
Value T // for use by client; untouched by this library
}
func (r *Ring[T]) init() *Ring[T] {
r.next = r
r.prev = r
return r
}
// Next returns the next ring element. r must not be empty.
func (r *Ring[T]) Next() *Ring[T] {
if r.next == nil {
return r.init()
}
return r.next
}
// Prev returns the previous ring element. r must not be empty.
func (r *Ring[T]) Prev() *Ring[T] {
if r.next == nil {
return r.init()
}
return r.prev
}
// Move moves n % r.Len() elements backward (n < 0) or forward (n >= 0)
// in the ring and returns that ring element. r must not be empty.
func (r *Ring[T]) Move(n int) *Ring[T] {
if r.next == nil {
return r.init()
}
switch {
case n < 0:
for ; n < 0; n++ {
r = r.prev
}
case n > 0:
for ; n > 0; n-- {
r = r.next
}
}
return r
}
// New creates a ring of n elements.
func New[T any](n int) *Ring[T] {
if n <= 0 {
return nil
}
r := new(Ring[T])
p := r
for i := 1; i < n; i++ {
p.next = &Ring[T]{prev: p}
p = p.next
}
p.next = r
r.prev = p
return r
}
// Link connects ring r with ring s such that r.Next()
// becomes s and returns the original value for r.Next().
// r must not be empty.
//
// If r and s point to the same ring, linking
// them removes the elements between r and s from the ring.
// The removed elements form a subring and the result is a
// reference to that subring (if no elements were removed,
// the result is still the original value for r.Next(),
// and not nil).
//
// If r and s point to different rings, linking
// them creates a single ring with the elements of s inserted
// after r. The result points to the element following the
// last element of s after insertion.
func (r *Ring[T]) Link(s *Ring[T]) *Ring[T] {
n := r.Next()
if s != nil {
p := s.Prev()
// Note: Cannot use multiple assignment because
// evaluation order of LHS is not specified.
r.next = s
s.prev = r
n.prev = p
p.next = n
}
return n
}
// Unlink removes n % r.Len() elements from the ring r, starting
// at r.Next(). If n % r.Len() == 0, r remains unchanged.
// The result is the removed subring. r must not be empty.
func (r *Ring[T]) Unlink(n int) *Ring[T] {
if n <= 0 {
return nil
}
return r.Link(r.Move(n + 1))
}
// Len computes the number of elements in ring r.
// It executes in time proportional to the number of elements.
func (r *Ring[T]) Len() int {
n := 0
if r != nil {
n = 1
for p := r.Next(); p != r; p = p.next {
n++
}
}
return n
}
// Do calls function f on each element of the ring, in forward order.
// The behavior of Do is undefined if f changes *r.
func (r *Ring[T]) Do(f func(any)) {
if r != nil {
f(r.Value)
for p := r.Next(); p != r; p = p.next {
f(p.Value)
}
}
}