Examples simulate previous interactions with an LLM and come
right after the system prompt. This helps grounding the model and
producing better responses.
* DEV: Use structured responses for summaries
* Fix system specs
* Make response_format a first class citizen and update endpoints to support it
* Response format can be specified in the persona
* lint
* switch to jsonb and make column nullable
* Reify structured output chunks. Move JSON parsing to the depths of Completion
* Switch to JsonStreamingTracker for partial JSON parsing
* REFACTOR: Move personas into it's own module.
* WIP: Use personas for summarization
* Prioritize persona default LLM or fallback to newest one
* Simplify summarization strategy
* Keep ai_sumarization_model as a fallback