When spam scanner is enabled and code is reloaded, developer experience this error:
```
NameError at /posts
===================
uninitialized constant DiscourseAi::AiModeration::EntryPoint::SpamScanner
> To access an interactive console with this error, point your browser to: /__better_errors
plugins/discourse-ai/lib/ai_moderation/entry_point.rb, line 7
```
It is because when we call `SpamScanner` it is searched within parent `DiscourseAi::AiModeration::EntryPoint` namespace.
We can help a bit Zeitwerk by calling SpamScanner more explicitly.
Currently in core re-flagging something that is already flagged as spam
is not supported, long term we may want to support this but in the meantime
we should not be silencing/hiding if the PostActionCreator fails
when flagging things as spam.
---------
Co-authored-by: Ted Johansson <drenmi@gmail.com>
This should give us a better idea on how our scanner is faring across sites.
```
# HELP discourse_discourse_ai_spam_detection AI spam scanning statistics
# TYPE discourse_discourse_ai_spam_detection counter
discourse_discourse_ai_spam_detection{db="default",type="scanned"} 16
discourse_discourse_ai_spam_detection{db="default",type="is_spam"} 7
discourse_discourse_ai_spam_detection{db="default",type="false_positive"} 1
discourse_discourse_ai_spam_detection{db="default",type="false_negative"} 2
```
This adds registration and last known IP information and email to scanning context.
This provides another hint for spam scanner about possible malicious users.
For example registered in India, replying from Australia or
email is clearly a throwaway email address.
When enabling spam scanner it there may be old unscanned posts
this can create a risky situation where spam scanner operates
on legit posts during false positives
To keep this a lot safer we no longer try to hide old stuff by
the spammers.
This update adds some structure for handling errors in the spam config while also handling a specific error related to the spam scanning user not being an admin account.
- Add spam_score_type to AiSpamSerializer for better integration with reviewables.
- Introduce a custom filter for detecting AI spam false negatives in moderation workflows.
- Refactor spam report generation to improve identification of false negatives.
- Add tests to verify the custom filter and its behavior.
- Introduce links for all spam counts in report
This introduces a comprehensive spam detection system that uses LLM models
to automatically identify and flag potential spam posts. The system is
designed to be both powerful and configurable while preventing false positives.
Key Features:
* Automatically scans first 3 posts from new users (TL0/TL1)
* Creates dedicated AI flagging user to distinguish from system flags
* Tracks false positives/negatives for quality monitoring
* Supports custom instructions to fine-tune detection
* Includes test interface for trying detection on any post
Technical Implementation:
* New database tables:
- ai_spam_logs: Stores scan history and results
- ai_moderation_settings: Stores LLM config and custom instructions
* Rate limiting and safeguards:
- Minimum 10-minute delay between rescans
- Only scans significant edits (>10 char difference)
- Maximum 3 scans per post
- 24-hour maximum age for scannable posts
* Admin UI features:
- Real-time testing capabilities
- 7-day statistics dashboard
- Configurable LLM model selection
- Custom instruction support
Security and Performance:
* Respects trust levels - only scans TL0/TL1 users
* Skips private messages entirely
* Stops scanning users after 3 successful public posts
* Includes comprehensive test coverage
* Maintains audit log of all scan attempts
---------
Co-authored-by: Keegan George <kgeorge13@gmail.com>
Co-authored-by: Martin Brennan <martin@discourse.org>