Commit Graph

14 Commits

Author SHA1 Message Date
Roman Rizzi aef84bc5bb
FEATURE: Examples support for personas. (#1334)
Examples simulate previous interactions with an LLM and come
right after the system prompt. This helps grounding the model and
producing better responses.
2025-05-13 10:06:16 -03:00
Roman Rizzi c0a2d4c935
DEV: Use structured responses for summaries (#1252)
* DEV: Use structured responses for summaries

* Fix system specs

* Make response_format a first class citizen and update endpoints to support it

* Response format can be specified in the persona

* lint

* switch to jsonb and make column nullable

* Reify structured output chunks. Move JSON parsing to the depths of Completion

* Switch to JsonStreamingTracker for partial JSON parsing
2025-05-06 10:09:39 -03:00
Sam 5e80f93e4c
FEATURE: PDF support for rag pipeline (#1118)
This PR introduces several enhancements and refactorings to the AI Persona and RAG (Retrieval-Augmented Generation) functionalities within the discourse-ai plugin. Here's a breakdown of the changes:

**1. LLM Model Association for RAG and Personas:**

-   **New Database Columns:** Adds `rag_llm_model_id` to both `ai_personas` and `ai_tools` tables. This allows specifying a dedicated LLM for RAG indexing, separate from the persona's primary LLM.  Adds `default_llm_id` and `question_consolidator_llm_id` to `ai_personas`.
-   **Migration:**  Includes a migration (`20250210032345_migrate_persona_to_llm_model_id.rb`) to populate the new `default_llm_id` and `question_consolidator_llm_id` columns in `ai_personas` based on the existing `default_llm` and `question_consolidator_llm` string columns, and a post migration to remove the latter.
-   **Model Changes:**  The `AiPersona` and `AiTool` models now `belong_to` an `LlmModel` via `rag_llm_model_id`. The `LlmModel.proxy` method now accepts an `LlmModel` instance instead of just an identifier.  `AiPersona` now has `default_llm_id` and `question_consolidator_llm_id` attributes.
-   **UI Updates:**  The AI Persona and AI Tool editors in the admin panel now allow selecting an LLM for RAG indexing (if PDF/image support is enabled).  The RAG options component displays an LLM selector.
-   **Serialization:** The serializers (`AiCustomToolSerializer`, `AiCustomToolListSerializer`, `LocalizedAiPersonaSerializer`) have been updated to include the new `rag_llm_model_id`, `default_llm_id` and `question_consolidator_llm_id` attributes.

**2. PDF and Image Support for RAG:**

-   **Site Setting:** Introduces a new hidden site setting, `ai_rag_pdf_images_enabled`, to control whether PDF and image files can be indexed for RAG. This defaults to `false`.
-   **File Upload Validation:** The `RagDocumentFragmentsController` now checks the `ai_rag_pdf_images_enabled` setting and allows PDF, PNG, JPG, and JPEG files if enabled.  Error handling is included for cases where PDF/image indexing is attempted with the setting disabled.
-   **PDF Processing:** Adds a new utility class, `DiscourseAi::Utils::PdfToImages`, which uses ImageMagick (`magick`) to convert PDF pages into individual PNG images. A maximum PDF size and conversion timeout are enforced.
-   **Image Processing:** A new utility class, `DiscourseAi::Utils::ImageToText`, is included to handle OCR for the images and PDFs.
-   **RAG Digestion Job:** The `DigestRagUpload` job now handles PDF and image uploads. It uses `PdfToImages` and `ImageToText` to extract text and create document fragments.
-   **UI Updates:**  The RAG uploader component now accepts PDF and image file types if `ai_rag_pdf_images_enabled` is true. The UI text is adjusted to indicate supported file types.

**3. Refactoring and Improvements:**

-   **LLM Enumeration:** The `DiscourseAi::Configuration::LlmEnumerator` now provides a `values_for_serialization` method, which returns a simplified array of LLM data (id, name, vision_enabled) suitable for use in serializers. This avoids exposing unnecessary details to the frontend.
-   **AI Helper:** The `AiHelper::Assistant` now takes optional `helper_llm` and `image_caption_llm` parameters in its constructor, allowing for greater flexibility.
-   **Bot and Persona Updates:** Several updates were made across the codebase, changing the string based association to a LLM to the new model based.
-   **Audit Logs:** The `DiscourseAi::Completions::Endpoints::Base` now formats raw request payloads as pretty JSON for easier auditing.
- **Eval Script:** An evaluation script is included.

**4. Testing:**

-    The PR introduces a new eval system for LLMs, this allows us to test how functionality works across various LLM providers. This lives in `/evals`
2025-02-14 12:15:07 +11:00
Hoa Nguyen b60926c6e6
FEATURE: Tool name validation (#842)
* FEATURE: Tool name validation

- Add unique index to the name column of the ai_tools table
- correct our tests for AiToolController
- tool_name field which will be used to represent to LLM
- Add tool_name to Tools's presets
- Add duplicate tools validation for AiPersona
- Add unique constraint to the name column of the ai_tools table

* DEV: Validate duplicate tool_name between builin tools and custom tools

* lint

* chore: fix linting

* fix conlict mistakes

* chore: correct icon class

* chore: fix failed specs

* Add max_length to tool_name

* chore: correct the option name

* lintings

* fix lintings
2025-02-07 14:34:47 +11:00
Sam a7d032fa28
DEV: artifact system update (#1096)
### Why

This pull request fundamentally restructures how AI bots create and update web artifacts to address critical limitations in the previous approach:

1.  **Improved Artifact Context for LLMs**: Previously, artifact creation and update tools included the *entire* artifact source code directly in the tool arguments. This overloaded the Language Model (LLM) with raw code, making it difficult for the LLM to maintain a clear understanding of the artifact's current state when applying changes. The LLM would struggle to differentiate between the base artifact and the requested modifications, leading to confusion and less effective updates.
2.  **Reduced Token Usage and History Bloat**: Including the full artifact source code in every tool interaction was extremely token-inefficient.  As conversations progressed, this redundant code in the history consumed a significant number of tokens unnecessarily. This not only increased costs but also diluted the context for the LLM with less relevant historical information.
3.  **Enabling Updates for Large Artifacts**: The lack of a practical diff or targeted update mechanism made it nearly impossible to efficiently update larger web artifacts.  Sending the entire source code for every minor change was both computationally expensive and prone to errors, effectively blocking the use of AI bots for meaningful modifications of complex artifacts.

**This pull request addresses these core issues by**:

*   Introducing methods for the AI bot to explicitly *read* and understand the current state of an artifact.
*   Implementing efficient update strategies that send *targeted* changes rather than the entire artifact source code.
*   Providing options to control the level of artifact context included in LLM prompts, optimizing token usage.

### What

The main changes implemented in this PR to resolve the above issues are:

1.  **`Read Artifact` Tool for Contextual Awareness**:
    - A new `read_artifact` tool is introduced, enabling AI bots to fetch and process the current content of a web artifact from a given URL (local or external).
    - This provides the LLM with a clear and up-to-date representation of the artifact's HTML, CSS, and JavaScript, improving its understanding of the base to be modified.
    - By cloning local artifacts, it allows the bot to work with a fresh copy, further enhancing context and control.

2.  **Refactored `Update Artifact` Tool with Efficient Strategies**:
    - The `update_artifact` tool is redesigned to employ more efficient update strategies, minimizing token usage and improving update precision:
        - **`diff` strategy**:  Utilizes a search-and-replace diff algorithm to apply only the necessary, targeted changes to the artifact's code. This significantly reduces the amount of code sent to the LLM and focuses its attention on the specific modifications.
        - **`full` strategy**:  Provides the option to replace the entire content sections (HTML, CSS, JavaScript) when a complete rewrite is required.
    - Tool options enhance the control over the update process:
        - `editor_llm`:  Allows selection of a specific LLM for artifact updates, potentially optimizing for code editing tasks.
        - `update_algorithm`: Enables choosing between `diff` and `full` update strategies based on the nature of the required changes.
        - `do_not_echo_artifact`:  Defaults to true, and by *not* echoing the artifact in prompts, it further reduces token consumption in scenarios where the LLM might not need the full artifact context for every update step (though effectiveness might be slightly reduced in certain update scenarios).

3.  **System and General Persona Tool Option Visibility and Customization**:
    - Tool options, including those for system personas, are made visible and editable in the admin UI. This allows administrators to fine-tune the behavior of all personas and their tools, including setting specific LLMs or update algorithms. This was previously limited or hidden for system personas.

4.  **Centralized and Improved Content Security Policy (CSP) Management**:
    - The CSP for AI artifacts is consolidated and made more maintainable through the `ALLOWED_CDN_SOURCES` constant. This improves code organization and future updates to the allowed CDN list, while maintaining the existing security posture.

5.  **Codebase Improvements**:
    - Refactoring of diff utilities, introduction of strategy classes, enhanced error handling, new locales, and comprehensive testing all contribute to a more robust, efficient, and maintainable artifact management system.

By addressing the issues of LLM context confusion, token inefficiency, and the limitations of updating large artifacts, this pull request significantly improves the practicality and effectiveness of AI bots in managing web artifacts within Discourse.
2025-02-04 16:27:27 +11:00
Rafael dos Santos Silva 8f0756fbca
FEATURE: Block seeded models for being a persona default (#1100) 2025-01-29 17:13:19 -03:00
Sam bdf3b6268b
FEATURE: smarter persona tethering (#832)
Splits persona permissions so you can allow a persona on:

- chat dms
- personal messages
- topic mentions
- chat channels

(any combination is allowed)

Previously we did not have this flexibility.

Additionally, adds the ability to "tether" a language model to a persona so it will always be used by the persona. This allows people to use a cheaper language model for one group of people and more expensive one for other people
2024-10-16 07:20:31 +11:00
Sam 03eccbe392
FEATURE: Make tool support polymorphic (#798)
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool

In turn this gives us support for richer RAG implementations.
2024-09-16 08:17:17 +10:00
Sam 52a7dd2a4b
FEATURE: optional tool detail blocks (#662)
This is a rather huge refactor with 1 new feature (tool details can
be suppressed)

Previously we use the name "Command" to describe "Tools", this unifies
all the internal language and simplifies the code.

We also amended the persona UI to use less DToggles which aligns
with our design guidelines.

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-06-11 18:14:14 +10:00
Sam e4b326c711
FEATURE: support Chat with AI Persona via a DM (#488)
Add support for chat with AI personas

- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context

At the moment unlike posts we do not carry tool calls in the context.

No @mention support yet for ai personas in channels, this is future work
2024-05-06 09:49:02 +10:00
Sam f6ac5cd0a8
FEATURE: allow tuning of RAG generation (#565)
* FEATURE: allow tuning of RAG generation

- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings

* improve ui a bit

* fix various reindex issues

* reduce concurrency

* try ultra low queue ... concurrency 1 is too slow.
2024-04-12 10:32:46 -03:00
Sam 3a8d95f6b2
FEATURE: mentionable personas and random picker tool, context limits (#466)
1. Personas are now optionally mentionable, meaning that you can mention them either from public topics or PMs
       - Mentioning from PMs helps "switch" persona mid conversation, meaning if you want to look up sites setting you can invoke the site setting bot, or if you want to generate an image you can invoke dall e
        - Mentioning outside of PMs allows you to inject a bot reply in a topic trivially
     - We also add the support for max_context_posts this allow you to limit the amount of context you feed in, which can help control costs

2. Add support for a "random picker" tool that can be used to pick random numbers 

3. Clean up routing ai_personas -> ai-personas

4. Add Max Context Posts so users can control how much history a persona can consume (this is important for mentionable personas) 

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-02-15 16:37:59 +11:00
Sam 5b5edb22c6
FEATURE: UI to update ai personas on admin page (#290)
Introduces a UI to manage customizable personas (admin only feature)

Part of the change was some extensive internal refactoring:

- AIBot now has a persona set in the constructor, once set it never changes
- Command now takes in bot as a constructor param, so it has the correct persona and is not generating AIBot objects on the fly
- Added a .prettierignore file, due to the way ALE is configured in nvim it is a pre-req for prettier to work
- Adds a bunch of validations on the AIPersona model, system personas (artist/creative etc...) are all seeded. We now ensure
- name uniqueness, and only allow certain properties to be touched for system personas.
- (JS note) the client side design takes advantage of nested routes, the parent route for personas gets all the personas via this.store.findAll("ai-persona") then child routes simply reach into this model to find a particular persona.
- (JS note) data is sideloaded into the ai-persona model the meta property supplied from the controller, resultSetMeta
- This removes ai_bot_enabled_personas and ai_bot_enabled_chat_commands, both should be controlled from the UI on a per persona basis
- Fixes a long standing bug in token accounting ... we were doing to_json.length instead of to_json.to_s.length
- Amended it so {commands} are always inserted at the end unconditionally, no need to add it to the template of the system message as it just confuses things
- Adds a concept of required_commands to stock personas, these are commands that must be configured for this stock persona to show up.
- Refactored tests so we stop requiring inference_stubs, it was very confusing to need it, added to plugin.rb for now which at least is clearer
- Migrates the persona selector to gjs

---------

Co-authored-by: Joffrey JAFFEUX <j.jaffeux@gmail.com>
Co-authored-by: Martin Brennan <martin@discourse.org>
2023-11-21 16:56:43 +11:00
Sam a4f419f54f
FEATURE: basic infrastructure for custom personas (#288)
- New AiPersona model which can store custom personas
- Persona are restricted via group security
- They can contain custom system messages
- They can support a list of commands optionally

To avoid expensive DB calls in the serializer a Multisite friendly Hash was introduced (which can be expired on transaction commit)
2023-11-10 11:39:49 +11:00