# frozen_string_literal: true desc "Backfill embeddings for all topics" task "ai:embeddings:backfill", [:start_topic] => [:environment] do |_, args| public_categories = Category.where(read_restricted: false).pluck(:id) strategy = DiscourseAi::Embeddings::Strategies::Truncation.new vector_rep = DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy) table_name = vector_rep.table_name Topic .joins("LEFT JOIN #{table_name} ON #{table_name}.topic_id = topics.id") .where("#{table_name}.topic_id IS NULL") .where("topics.id >= ?", args[:start_topic].to_i || 0) .where("category_id IN (?)", public_categories) .where(deleted_at: nil) .order("topics.id ASC") .find_each do |t| print "." vector_rep.generate_topic_representation_from(t) end end desc "Creates indexes for embeddings" task "ai:embeddings:index", [:work_mem] => [:environment] do |_, args| # Using extension maintainer's recommendation for ivfflat indexes # Results are not as good as without indexes, but it's much faster # Disk usage is ~1x the size of the table, so this doubles table total size count = Topic.count lists = count < 1_000_000 ? count / 1000 : Math.sqrt(count).to_i probes = count < 1_000_000 ? lists / 10 : Math.sqrt(lists).to_i vector_representation_klass = DiscourseAi::Embeddings::Vectors::Base.find_vector_representation strategy = DiscourseAi::Embeddings::Strategies::Truncation.new DB.exec("SET work_mem TO '#{args[:work_mem] || "100MB"}';") DB.exec("SET maintenance_work_mem TO '#{args[:work_mem] || "100MB"}';") vector_representation_klass.new(strategy).create_index(lists, probes) DB.exec("RESET work_mem;") DB.exec("RESET maintenance_work_mem;") DB.exec("ALTER SYSTEM SET ivfflat.probes = #{probes};") end