# frozen_string_literal: true module DiscourseAi module Summarization # This class offers a generic way of summarizing content from multiple sources using different prompts. # # It summarizes large amounts of content by recursively summarizing it in smaller chunks that # fit the given model context window, finally concatenating the disjoint summaries # into a final version. # class FoldContent def initialize(bot, strategy, persist_summaries: true) @bot = bot @strategy = strategy @persist_summaries = persist_summaries end attr_reader :bot, :strategy # @param user { User } - User object used for auditing usage. # @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response. # Note: The block is only called with results of the final summary, not intermediate summaries. # # This method doesn't care if we already have an up to date summary. It always regenerate. # # @returns { AiSummary } - Resulting summary. def summarize(user, &on_partial_blk) truncated_content = content_to_summarize.map { |cts| truncate(cts) } summary = fold(truncated_content, user, &on_partial_blk) if persist_summaries AiSummary.store!(strategy, llm_model, summary, truncated_content, human: user&.human?) else AiSummary.new(summarized_text: summary) end end # @returns { AiSummary } - Resulting summary. # # Finds a summary matching the target and strategy. Marks it as outdated if the strategy found newer content def existing_summary if !defined?(@existing_summary) summary = AiSummary.find_by(target: strategy.target, summary_type: strategy.type) if summary @existing_summary = summary if summary.original_content_sha != latest_sha || content_to_summarize.any? { |cts| cts[:last_version_at] > summary.updated_at } summary.mark_as_outdated end end end @existing_summary end def delete_cached_summaries! AiSummary.where(target: strategy.target, summary_type: strategy.type).destroy_all end private attr_reader :persist_summaries def llm_model bot.llm.llm_model end def content_to_summarize @targets_data ||= strategy.targets_data end def latest_sha @latest_sha ||= AiSummary.build_sha(content_to_summarize.map { |c| c[:id] }.join) end # @param items { Array } - Content to summarize. Structure will be: { poster: who wrote the content, id: a way to order content, text: content } # @param user { User } - User object used for auditing usage. # @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response. # Note: The block is only called with results of the final summary, not intermediate summaries. # # The summarization algorithm. # It will summarize as much content summarize given the model's context window. If will prioriotize newer content in case it doesn't fit. # # @returns { String } - Resulting summary. def fold(items, user, &on_partial_blk) tokenizer = llm_model.tokenizer_class tokens_left = available_tokens content_in_window = [] items.each_with_index do |item, idx| as_text = "(#{item[:id]} #{item[:poster]} said: #{item[:text]} " if tokenizer.below_limit?(as_text, tokens_left) content_in_window << item tokens_left -= tokenizer.size(as_text) else break end end context = DiscourseAi::Personas::BotContext.new( user: user, skip_tool_details: true, feature_name: strategy.feature, resource_url: "#{Discourse.base_path}/t/-/#{strategy.target.id}", messages: strategy.as_llm_messages(content_in_window), ) summary = +"" buffer_blk = Proc.new do |partial, _, type| if type == :structured_output json_summary_schema_key = bot.persona.response_format&.first.to_h partial_summary = partial.read_buffered_property(json_summary_schema_key["key"]&.to_sym) if partial_summary.present? summary << partial_summary on_partial_blk.call(partial_summary) if on_partial_blk end elsif type.blank? # Assume response is a regular completion. summary << partial on_partial_blk.call(partial) if on_partial_blk end end bot.reply(context, &buffer_blk) summary end def available_tokens # Reserve tokens for the response and the base prompt # ~500 words reserved_tokens = 700 llm_model.max_prompt_tokens - reserved_tokens end def truncate(item) item_content = item[:text].to_s split_1, split_2 = [item_content[0, item_content.size / 2], item_content[(item_content.size / 2)..-1]] truncation_length = 500 tokenizer = llm_model.tokenizer_class item[:text] = [ tokenizer.truncate(split_1, truncation_length), tokenizer.truncate(split_2.reverse, truncation_length).reverse, ].join(" ") item end end end end