176 lines
5.5 KiB
Ruby
176 lines
5.5 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
module DiscourseAi
|
|
module Completions
|
|
module Endpoints
|
|
class Anthropic < Base
|
|
def self.can_contact?(model_provider)
|
|
model_provider == "anthropic"
|
|
end
|
|
|
|
def normalize_model_params(model_params)
|
|
# max_tokens, temperature, stop_sequences are already supported
|
|
model_params = model_params.dup
|
|
model_params.delete(:top_p) if llm_model.lookup_custom_param("disable_top_p")
|
|
model_params.delete(:temperature) if llm_model.lookup_custom_param("disable_temperature")
|
|
model_params
|
|
end
|
|
|
|
def default_options(dialect)
|
|
mapped_model =
|
|
case llm_model.name
|
|
when "claude-2"
|
|
"claude-2.1"
|
|
when "claude-instant-1"
|
|
"claude-instant-1.2"
|
|
when "claude-3-haiku"
|
|
"claude-3-haiku-20240307"
|
|
when "claude-3-sonnet"
|
|
"claude-3-sonnet-20240229"
|
|
when "claude-3-opus"
|
|
"claude-3-opus-20240229"
|
|
when "claude-3-5-sonnet"
|
|
"claude-3-5-sonnet-latest"
|
|
else
|
|
llm_model.name
|
|
end
|
|
|
|
# Note: Anthropic requires this param
|
|
max_tokens = 4096
|
|
# 3.5 and 3.7 models have a higher token limit
|
|
max_tokens = 8192 if mapped_model.match?(/3.[57]/)
|
|
|
|
options = { model: mapped_model, max_tokens: max_tokens }
|
|
|
|
# reasoning has even higher token limits
|
|
if llm_model.lookup_custom_param("enable_reasoning")
|
|
reasoning_tokens =
|
|
llm_model.lookup_custom_param("reasoning_tokens").to_i.clamp(1024, 32_768)
|
|
|
|
# this allows for lots of tokens beyond reasoning
|
|
options[:max_tokens] = reasoning_tokens + 30_000
|
|
options[:thinking] = { type: "enabled", budget_tokens: reasoning_tokens }
|
|
end
|
|
|
|
options[:stop_sequences] = ["</function_calls>"] if !dialect.native_tool_support? &&
|
|
dialect.prompt.has_tools?
|
|
|
|
options
|
|
end
|
|
|
|
def provider_id
|
|
AiApiAuditLog::Provider::Anthropic
|
|
end
|
|
|
|
private
|
|
|
|
def xml_tags_to_strip(dialect)
|
|
if dialect.prompt.has_tools?
|
|
%w[thinking search_quality_reflection search_quality_score]
|
|
else
|
|
[]
|
|
end
|
|
end
|
|
|
|
# this is an approximation, we will update it later if request goes through
|
|
def prompt_size(prompt)
|
|
tokenizer.size(prompt.system_prompt.to_s + " " + prompt.messages.to_s)
|
|
end
|
|
|
|
def model_uri
|
|
URI(llm_model.url)
|
|
end
|
|
|
|
def xml_tools_enabled?
|
|
!@native_tool_support
|
|
end
|
|
|
|
def prepare_payload(prompt, model_params, dialect)
|
|
@native_tool_support = dialect.native_tool_support?
|
|
|
|
payload =
|
|
default_options(dialect).merge(model_params.except(:response_format)).merge(
|
|
messages: prompt.messages,
|
|
)
|
|
|
|
payload[:system] = prompt.system_prompt if prompt.system_prompt.present?
|
|
payload[:stream] = true if @streaming_mode
|
|
|
|
prefilled_message = +""
|
|
|
|
if prompt.has_tools?
|
|
payload[:tools] = prompt.tools
|
|
if dialect.tool_choice.present?
|
|
if dialect.tool_choice == :none
|
|
payload[:tool_choice] = { type: "none" }
|
|
|
|
# prefill prompt to nudge LLM to generate a response that is useful.
|
|
# without this LLM (even 3.7) can get confused and start text preambles for a tool calls.
|
|
prefilled_message << dialect.no_more_tool_calls_text
|
|
else
|
|
payload[:tool_choice] = { type: "tool", name: prompt.tool_choice }
|
|
end
|
|
end
|
|
end
|
|
|
|
# Prefill prompt to force JSON output.
|
|
if model_params[:response_format].present?
|
|
prefilled_message << " " if !prefilled_message.empty?
|
|
prefilled_message << "{"
|
|
@forced_json_through_prefill = true
|
|
end
|
|
|
|
if !prefilled_message.empty?
|
|
payload[:messages] << { role: "assistant", content: prefilled_message }
|
|
end
|
|
|
|
payload
|
|
end
|
|
|
|
def prepare_request(payload)
|
|
headers = {
|
|
"anthropic-version" => "2023-06-01",
|
|
"x-api-key" => llm_model.api_key,
|
|
"content-type" => "application/json",
|
|
}
|
|
|
|
Net::HTTP::Post.new(model_uri, headers).tap { |r| r.body = payload }
|
|
end
|
|
|
|
def decode_chunk(partial_data)
|
|
@decoder ||= JsonStreamDecoder.new
|
|
(@decoder << partial_data)
|
|
.map { |parsed_json| processor.process_streamed_message(parsed_json) }
|
|
.compact
|
|
end
|
|
|
|
def decode(response_data)
|
|
processor.process_message(response_data)
|
|
end
|
|
|
|
def processor
|
|
@processor ||=
|
|
DiscourseAi::Completions::AnthropicMessageProcessor.new(
|
|
streaming_mode: @streaming_mode,
|
|
partial_tool_calls: partial_tool_calls,
|
|
output_thinking: output_thinking,
|
|
)
|
|
end
|
|
|
|
def has_tool?(_response_data)
|
|
processor.tool_calls.present?
|
|
end
|
|
|
|
def tool_calls
|
|
processor.to_tool_calls
|
|
end
|
|
|
|
def final_log_update(log)
|
|
log.request_tokens = processor.input_tokens if processor.input_tokens
|
|
log.response_tokens = processor.output_tokens if processor.output_tokens
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|