discourse-ai/lib/personas/persona.rb

427 lines
12 KiB
Ruby

#frozen_string_literal: true
module DiscourseAi
module Personas
class Persona
class << self
def rag_conversation_chunks
10
end
def vision_enabled
false
end
def vision_max_pixels
1_048_576
end
def question_consolidator_llm_id
nil
end
def force_default_llm
false
end
def allow_chat_channel_mentions
false
end
def allow_chat_direct_messages
false
end
def system_personas
@system_personas ||= {
General => -1,
SqlHelper => -2,
Artist => -3,
SettingsExplorer => -4,
Researcher => -5,
Creative => -6,
DallE3 => -7,
DiscourseHelper => -8,
GithubHelper => -9,
WebArtifactCreator => -10,
Summarizer => -11,
ShortSummarizer => -12,
Designer => -13,
}
end
def system_personas_by_id
@system_personas_by_id ||= system_personas.invert
end
def all(user:)
# listing tools has to be dynamic cause site settings may change
AiPersona.all_personas.filter do |persona|
next false if !user.in_any_groups?(persona.allowed_group_ids)
if persona.system
instance = persona.new
(
instance.required_tools == [] ||
(instance.required_tools - all_available_tools).empty?
)
else
true
end
end
end
def find_by(id: nil, name: nil, user:)
all(user: user).find { |persona| persona.id == id || persona.name == name }
end
def name
I18n.t("discourse_ai.ai_bot.personas.#{to_s.demodulize.underscore}.name")
end
def description
I18n.t("discourse_ai.ai_bot.personas.#{to_s.demodulize.underscore}.description")
end
def all_available_tools
tools = [
Tools::ListCategories,
Tools::Time,
Tools::Search,
Tools::Read,
Tools::DbSchema,
Tools::SearchSettings,
Tools::SettingContext,
Tools::RandomPicker,
Tools::DiscourseMetaSearch,
Tools::GithubFileContent,
Tools::GithubPullRequestDiff,
Tools::GithubSearchFiles,
Tools::WebBrowser,
Tools::JavascriptEvaluator,
]
if SiteSetting.ai_artifact_security.in?(%w[lax strict])
tools << Tools::CreateArtifact
tools << Tools::UpdateArtifact
tools << Tools::ReadArtifact
end
tools << Tools::GithubSearchCode if SiteSetting.ai_bot_github_access_token.present?
tools << Tools::ListTags if SiteSetting.tagging_enabled
tools << Tools::Image if SiteSetting.ai_stability_api_key.present?
if SiteSetting.ai_openai_api_key.present?
tools << Tools::DallE
tools << Tools::CreateImage
tools << Tools::EditImage
end
if SiteSetting.ai_google_custom_search_api_key.present? &&
SiteSetting.ai_google_custom_search_cx.present?
tools << Tools::Google
end
tools
end
end
def id
@ai_persona&.id || self.class.system_personas[self.class.superclass] ||
self.class.system_personas[self.class]
end
def tools
[]
end
def force_tool_use
[]
end
def forced_tool_count
-1
end
def required_tools
[]
end
def temperature
nil
end
def top_p
nil
end
def options
{}
end
def response_format
nil
end
def examples
[]
end
def available_tools
self
.class
.all_available_tools
.filter { |tool| tools.include?(tool) }
.concat(tools.filter(&:custom?))
end
def craft_prompt(context, llm: nil)
system_insts = replace_placeholders(system_prompt, context)
prompt_insts = <<~TEXT.strip
#{system_insts}
#{available_tools.map(&:custom_system_message).compact_blank.join("\n")}
TEXT
question_consolidator_llm = llm
if self.class.question_consolidator_llm_id.present?
question_consolidator_llm ||=
DiscourseAi::Completions::Llm.proxy(
LlmModel.find_by(id: self.class.question_consolidator_llm_id),
)
end
if context.custom_instructions.present?
prompt_insts << "\n"
prompt_insts << context.custom_instructions
end
fragments_guidance =
rag_fragments_prompt(
context.messages,
llm: question_consolidator_llm,
user: context.user,
)&.strip
prompt_insts << fragments_guidance if fragments_guidance.present?
post_system_examples = []
if examples.present?
examples.flatten.each_with_index do |e, idx|
post_system_examples << {
content: replace_placeholders(e, context),
type: (idx + 1).odd? ? :user : :model,
}
end
end
prompt =
DiscourseAi::Completions::Prompt.new(
prompt_insts,
messages: post_system_examples.concat(context.messages),
topic_id: context.topic_id,
post_id: context.post_id,
)
prompt.max_pixels = self.class.vision_max_pixels if self.class.vision_enabled
prompt.tools = available_tools.map(&:signature) if available_tools
available_tools.each do |tool|
tool.inject_prompt(prompt: prompt, context: context, persona: self)
end
prompt
end
def find_tool(partial, bot_user:, llm:, context:, existing_tools: [])
return nil if !partial.is_a?(DiscourseAi::Completions::ToolCall)
tool_instance(
partial,
bot_user: bot_user,
llm: llm,
context: context,
existing_tools: existing_tools,
)
end
def allow_partial_tool_calls?
available_tools.any? { |tool| tool.allow_partial_tool_calls? }
end
protected
def replace_placeholders(content, context)
content.gsub(/\{(\w+)\}/) do |match|
found = context.lookup_template_param(match[1..-2])
found.nil? ? match : found.to_s
end
end
def tool_instance(tool_call, bot_user:, llm:, context:, existing_tools:)
function_id = tool_call.id
function_name = tool_call.name
return nil if function_name.nil?
tool_klass = available_tools.find { |c| c.signature.dig(:name) == function_name }
return nil if tool_klass.nil?
arguments = {}
tool_klass.signature[:parameters].to_a.each do |param|
name = param[:name]
value = tool_call.parameters[name.to_sym]
if param[:type] == "array" && value
value =
begin
JSON.parse(value)
rescue JSON::ParserError
[value.to_s]
end
elsif param[:type] == "string" && value
value = strip_quotes(value).to_s
elsif param[:type] == "integer" && value
value = strip_quotes(value).to_i
end
if param[:enum] && value && !param[:enum].include?(value)
# invalid enum value
value = nil
end
arguments[name.to_sym] = value if value
end
tool_instance =
existing_tools.find { |t| t.name == function_name && t.tool_call_id == function_id }
if tool_instance
tool_instance.parameters = arguments
tool_instance
else
tool_klass.new(
arguments,
tool_call_id: function_id || function_name,
persona_options: options[tool_klass].to_h,
bot_user: bot_user,
llm: llm,
context: context,
)
end
end
def strip_quotes(value)
if value.is_a?(String)
if value.start_with?('"') && value.end_with?('"')
value = value[1..-2]
elsif value.start_with?("'") && value.end_with?("'")
value = value[1..-2]
else
value
end
else
value
end
end
def rag_fragments_prompt(conversation_context, llm:, user:)
upload_refs =
UploadReference.where(target_id: id, target_type: "AiPersona").pluck(:upload_id)
return nil if !DiscourseAi::Embeddings.enabled?
return nil if conversation_context.blank? || upload_refs.blank?
latest_interactions =
conversation_context.select { |ctx| %i[model user].include?(ctx[:type]) }.last(10)
return nil if latest_interactions.empty?
# first response
if latest_interactions.length == 1
consolidated_question = latest_interactions[0][:content]
else
consolidated_question =
DiscourseAi::Personas::QuestionConsolidator.consolidate_question(
llm,
latest_interactions,
user,
)
end
return nil if !consolidated_question
vector = DiscourseAi::Embeddings::Vector.instance
reranker = DiscourseAi::Inference::HuggingFaceTextEmbeddings
interactions_vector = vector.vector_from(consolidated_question)
rag_conversation_chunks = self.class.rag_conversation_chunks
search_limit =
if reranker.reranker_configured?
rag_conversation_chunks * 5
else
rag_conversation_chunks
end
schema = DiscourseAi::Embeddings::Schema.for(RagDocumentFragment)
candidate_fragment_ids =
schema
.asymmetric_similarity_search(
interactions_vector,
limit: search_limit,
offset: 0,
) { |builder| builder.join(<<~SQL, target_id: id, target_type: "AiPersona") }
rag_document_fragments ON
rag_document_fragments.id = rag_document_fragment_id AND
rag_document_fragments.target_id = :target_id AND
rag_document_fragments.target_type = :target_type
SQL
.map(&:rag_document_fragment_id)
fragments =
RagDocumentFragment.where(upload_id: upload_refs, id: candidate_fragment_ids).pluck(
:fragment,
:metadata,
)
if reranker.reranker_configured?
guidance = fragments.map { |fragment, _metadata| fragment }
ranks =
DiscourseAi::Inference::HuggingFaceTextEmbeddings
.rerank(conversation_context.last[:content], guidance)
.to_a
.take(rag_conversation_chunks)
.map { _1[:index] }
if ranks.empty?
fragments = fragments.take(rag_conversation_chunks)
else
fragments = ranks.map { |idx| fragments[idx] }
end
end
<<~TEXT
<guidance>
The following texts will give you additional guidance for your response.
We included them because we believe they are relevant to this conversation topic.
Texts:
#{
fragments
.map do |fragment, metadata|
if metadata.present?
["# #{metadata}", fragment].join("\n")
else
fragment
end
end
.join("\n")
}
</guidance>
TEXT
end
end
end
end