620 lines
23 KiB
Ruby
620 lines
23 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
require_relative "endpoint_compliance"
|
|
|
|
class GeminiMock < EndpointMock
|
|
def response(content, tool_call: false)
|
|
{
|
|
candidates: [
|
|
{
|
|
content: {
|
|
parts: [(tool_call ? content : { text: content })],
|
|
role: "model",
|
|
},
|
|
finishReason: "STOP",
|
|
index: 0,
|
|
safetyRatings: [
|
|
{ category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" },
|
|
],
|
|
},
|
|
],
|
|
promptFeedback: {
|
|
safetyRatings: [
|
|
{ category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" },
|
|
],
|
|
},
|
|
}
|
|
end
|
|
|
|
def stub_response(prompt, response_text, tool_call: false)
|
|
WebMock
|
|
.stub_request(
|
|
:post,
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent?key=#{SiteSetting.ai_gemini_api_key}",
|
|
)
|
|
.with(body: request_body(prompt, tool_call))
|
|
.to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call)))
|
|
end
|
|
|
|
def stream_line(delta, finish_reason: nil, tool_call: false)
|
|
{
|
|
candidates: [
|
|
{
|
|
content: {
|
|
parts: [(tool_call ? delta : { text: delta })],
|
|
role: "model",
|
|
},
|
|
finishReason: finish_reason,
|
|
index: 0,
|
|
safetyRatings: [
|
|
{ category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" },
|
|
],
|
|
},
|
|
],
|
|
}.to_json
|
|
end
|
|
|
|
def stub_streamed_response(prompt, deltas, tool_call: false)
|
|
chunks =
|
|
deltas.each_with_index.map do |_, index|
|
|
if index == (deltas.length - 1)
|
|
stream_line(deltas[index], finish_reason: "STOP", tool_call: tool_call)
|
|
else
|
|
stream_line(deltas[index], tool_call: tool_call)
|
|
end
|
|
end
|
|
|
|
chunks = chunks.join("\n,\n").prepend("[\n").concat("\n]").split("")
|
|
|
|
WebMock
|
|
.stub_request(
|
|
:post,
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:streamGenerateContent?key=#{SiteSetting.ai_gemini_api_key}",
|
|
)
|
|
.with(body: request_body(prompt, tool_call))
|
|
.to_return(status: 200, body: chunks)
|
|
end
|
|
|
|
def tool_payload
|
|
{
|
|
name: "get_weather",
|
|
description: "Get the weather in a city",
|
|
parameters: {
|
|
type: "object",
|
|
required: %w[location unit],
|
|
properties: {
|
|
"location" => {
|
|
type: "string",
|
|
description: "the city name",
|
|
},
|
|
"unit" => {
|
|
type: "string",
|
|
description: "the unit of measurement celcius c or fahrenheit f",
|
|
enum: %w[c f],
|
|
},
|
|
},
|
|
},
|
|
}
|
|
end
|
|
|
|
def request_body(prompt, tool_call)
|
|
model
|
|
.default_options
|
|
.merge(contents: prompt)
|
|
.tap { |b| b[:tools] = [{ function_declarations: [tool_payload] }] if tool_call }
|
|
.to_json
|
|
end
|
|
|
|
def tool_deltas
|
|
[
|
|
{ "functionCall" => { name: "get_weather", args: {} } },
|
|
{ "functionCall" => { name: "get_weather", args: { location: "" } } },
|
|
{ "functionCall" => { name: "get_weather", args: { location: "Sydney", unit: "c" } } },
|
|
]
|
|
end
|
|
|
|
def tool_response
|
|
{ "functionCall" => { name: "get_weather", args: { location: "Sydney", unit: "c" } } }
|
|
end
|
|
end
|
|
|
|
RSpec.describe DiscourseAi::Completions::Endpoints::Gemini do
|
|
subject(:endpoint) { described_class.new(model) }
|
|
|
|
fab!(:model) { Fabricate(:gemini_model, vision_enabled: true) }
|
|
|
|
fab!(:user)
|
|
|
|
let(:image100x100) { plugin_file_from_fixtures("100x100.jpg") }
|
|
let(:upload100x100) do
|
|
UploadCreator.new(image100x100, "image.jpg").create_for(Discourse.system_user.id)
|
|
end
|
|
|
|
let(:gemini_mock) { GeminiMock.new(endpoint) }
|
|
|
|
let(:compliance) do
|
|
EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::Gemini, user)
|
|
end
|
|
|
|
let(:echo_tool) do
|
|
{
|
|
name: "echo",
|
|
description: "echo something",
|
|
parameters: [{ name: "text", type: "string", description: "text to echo", required: true }],
|
|
}
|
|
end
|
|
|
|
it "correctly configures thinking when enabled" do
|
|
model.update!(provider_params: { enable_thinking: "true", thinking_tokens: "10000" })
|
|
|
|
response = gemini_mock.response("Using thinking mode").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate("Hello", user: user)
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
# Verify thinking config is properly set with the token limit
|
|
expect(parsed.dig(:generationConfig, :thinkingConfig)).to eq({ thinkingBudget: 10_000 })
|
|
end
|
|
|
|
it "clamps thinking tokens within allowed limits" do
|
|
model.update!(provider_params: { enable_thinking: "true", thinking_tokens: "30000" })
|
|
|
|
response = gemini_mock.response("Thinking tokens clamped").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate("Hello", user: user)
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
# Verify thinking tokens are clamped to 24_576
|
|
expect(parsed.dig(:generationConfig, :thinkingConfig)).to eq({ thinkingBudget: 24_576 })
|
|
end
|
|
|
|
it "does not add thinking config when disabled" do
|
|
model.update!(provider_params: { enable_thinking: false, thinking_tokens: "10000" })
|
|
|
|
response = gemini_mock.response("No thinking mode").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate("Hello", user: user)
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
# Verify thinking config is not present
|
|
expect(parsed.dig(:generationConfig, :thinkingConfig)).to be_nil
|
|
end
|
|
|
|
# by default gemini is meant to use AUTO mode, however new experimental models
|
|
# appear to require this to be explicitly set
|
|
it "Explicitly specifies tool config" do
|
|
prompt = DiscourseAi::Completions::Prompt.new("Hello", tools: [echo_tool])
|
|
|
|
response = gemini_mock.response("World").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate(prompt, user: user)
|
|
|
|
expect(response).to eq("World")
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
expect(parsed[:tool_config]).to eq({ function_calling_config: { mode: "AUTO" } })
|
|
end
|
|
|
|
it "properly encodes tool calls" do
|
|
prompt = DiscourseAi::Completions::Prompt.new("Hello", tools: [echo_tool])
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
response_json = { "functionCall" => { name: "echo", args: { text: "<S>ydney" } } }
|
|
response = gemini_mock.response(response_json, tool_call: true).to_json
|
|
|
|
stub_request(:post, url).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate(prompt, user: user)
|
|
|
|
tool =
|
|
DiscourseAi::Completions::ToolCall.new(
|
|
id: "tool_0",
|
|
name: "echo",
|
|
parameters: {
|
|
text: "<S>ydney",
|
|
},
|
|
)
|
|
|
|
expect(response).to eq(tool)
|
|
end
|
|
|
|
it "Supports Vision API" do
|
|
prompt =
|
|
DiscourseAi::Completions::Prompt.new(
|
|
"You are image bot",
|
|
messages: [type: :user, id: "user1", content: ["hello", { upload_id: upload100x100.id }]],
|
|
)
|
|
|
|
encoded = prompt.encoded_uploads(prompt.messages.last)
|
|
|
|
response = gemini_mock.response("World").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate(prompt, user: user)
|
|
|
|
expect(response).to eq("World")
|
|
|
|
expected_prompt = {
|
|
"generationConfig" => {
|
|
},
|
|
"safetySettings" => [
|
|
{ "category" => "HARM_CATEGORY_HARASSMENT", "threshold" => "BLOCK_NONE" },
|
|
{ "category" => "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold" => "BLOCK_NONE" },
|
|
{ "category" => "HARM_CATEGORY_HATE_SPEECH", "threshold" => "BLOCK_NONE" },
|
|
{ "category" => "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold" => "BLOCK_NONE" },
|
|
],
|
|
"contents" => [
|
|
{
|
|
"role" => "user",
|
|
"parts" => [
|
|
{ "text" => "user1: hello" },
|
|
{ "inlineData" => { "mimeType" => "image/jpeg", "data" => encoded[0][:base64] } },
|
|
],
|
|
},
|
|
],
|
|
"systemInstruction" => {
|
|
"role" => "system",
|
|
"parts" => [{ "text" => "You are image bot" }],
|
|
},
|
|
}
|
|
|
|
expect(JSON.parse(req_body)).to eq(expected_prompt)
|
|
end
|
|
|
|
it "Can stream tool calls correctly" do
|
|
rows = [
|
|
{
|
|
candidates: [
|
|
{
|
|
content: {
|
|
parts: [{ functionCall: { name: "echo", args: { text: "sam<>wh!s" } } }],
|
|
role: "model",
|
|
},
|
|
safetyRatings: [
|
|
{ category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" },
|
|
{ category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" },
|
|
],
|
|
},
|
|
],
|
|
usageMetadata: {
|
|
promptTokenCount: 625,
|
|
totalTokenCount: 625,
|
|
},
|
|
modelVersion: "gemini-1.5-pro-002",
|
|
},
|
|
{
|
|
candidates: [{ content: { parts: [{ text: "" }], role: "model" }, finishReason: "STOP" }],
|
|
usageMetadata: {
|
|
promptTokenCount: 625,
|
|
candidatesTokenCount: 4,
|
|
totalTokenCount: 629,
|
|
},
|
|
modelVersion: "gemini-1.5-pro-002",
|
|
},
|
|
]
|
|
|
|
payload = rows.map { |r| "data: #{r.to_json}\n\n" }.join
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:streamGenerateContent?alt=sse&key=123"
|
|
|
|
prompt = DiscourseAi::Completions::Prompt.new("Hello", tools: [echo_tool])
|
|
|
|
output = []
|
|
|
|
stub_request(:post, url).to_return(status: 200, body: payload)
|
|
llm.generate(prompt, user: user) { |partial| output << partial }
|
|
|
|
tool_call =
|
|
DiscourseAi::Completions::ToolCall.new(
|
|
id: "tool_0",
|
|
name: "echo",
|
|
parameters: {
|
|
text: "sam<>wh!s",
|
|
},
|
|
)
|
|
|
|
expect(output).to eq([tool_call])
|
|
|
|
log = AiApiAuditLog.order(:id).last
|
|
expect(log.request_tokens).to eq(625)
|
|
expect(log.response_tokens).to eq(4)
|
|
end
|
|
|
|
it "Can correctly handle malformed responses" do
|
|
response = <<~TEXT
|
|
data: {"candidates": [{"content": {"parts": [{"text": "Certainly"}],"role": "model"}}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "! I'll create a simple \\"Hello, World!\\" page where each letter"}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": " has a different color using inline styles for simplicity. Each letter will be wrapped"}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": ""}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"finishReason": "MALFORMED_FUNCTION_CALL"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
TEXT
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:streamGenerateContent?alt=sse&key=123"
|
|
|
|
output = []
|
|
|
|
stub_request(:post, url).to_return(status: 200, body: response)
|
|
llm.generate("Hello", user: user) { |partial| output << partial }
|
|
|
|
expect(output).to eq(
|
|
[
|
|
"Certainly",
|
|
"! I'll create a simple \"Hello, World!\" page where each letter",
|
|
" has a different color using inline styles for simplicity. Each letter will be wrapped",
|
|
],
|
|
)
|
|
end
|
|
|
|
it "Can correctly handle streamed responses even if they are chunked badly" do
|
|
data = +""
|
|
data << "da|ta: |"
|
|
data << gemini_mock.response("Hello").to_json
|
|
data << "\r\n\r\ndata: "
|
|
data << gemini_mock.response(" |World").to_json
|
|
data << "\r\n\r\ndata: "
|
|
data << gemini_mock.response(" Sam").to_json
|
|
|
|
split = data.split("|")
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:streamGenerateContent?alt=sse&key=123"
|
|
|
|
output = []
|
|
gemini_mock.with_chunk_array_support do
|
|
stub_request(:post, url).to_return(status: 200, body: split)
|
|
llm.generate("Hello", user: user) { |partial| output << partial }
|
|
end
|
|
|
|
expect(output.join).to eq("Hello World Sam")
|
|
end
|
|
|
|
it "can properly disable tool use with :none" do
|
|
prompt = DiscourseAi::Completions::Prompt.new("Hello", tools: [echo_tool], tool_choice: :none)
|
|
|
|
response = gemini_mock.response("I won't use any tools").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate(prompt, user: user)
|
|
|
|
expect(response).to eq("I won't use any tools")
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
# Verify that function_calling_config mode is set to "NONE"
|
|
expect(parsed[:tool_config]).to eq({ function_calling_config: { mode: "NONE" } })
|
|
end
|
|
|
|
it "can properly force specific tool use" do
|
|
prompt = DiscourseAi::Completions::Prompt.new("Hello", tools: [echo_tool], tool_choice: "echo")
|
|
|
|
response = gemini_mock.response("World").to_json
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:generateContent?key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
_req_body
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
response = llm.generate(prompt, user: user)
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
# Verify that function_calling_config is correctly set to ANY mode with the specified tool
|
|
expect(parsed[:tool_config]).to eq(
|
|
{ function_calling_config: { mode: "ANY", allowed_function_names: ["echo"] } },
|
|
)
|
|
end
|
|
|
|
describe "structured output via JSON Schema" do
|
|
it "forces the response to be a JSON" do
|
|
schema = {
|
|
type: "json_schema",
|
|
json_schema: {
|
|
name: "reply",
|
|
schema: {
|
|
type: "object",
|
|
properties: {
|
|
key: {
|
|
type: "string",
|
|
},
|
|
num: {
|
|
type: "integer",
|
|
},
|
|
},
|
|
required: ["key"],
|
|
additionalProperties: false,
|
|
},
|
|
strict: true,
|
|
},
|
|
}
|
|
|
|
response = <<~TEXT.strip
|
|
data: {"candidates": [{"content": {"parts": [{"text": "{\\""}],"role": "model"}}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "key"}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "\\":\\""}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "Hello!"}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "\\n there"}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "\\","}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "\\""}],"role": "model"}}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "num"}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "\\":"}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "42"}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "}"}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"finishReason": "MALFORMED_FUNCTION_CALL"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
TEXT
|
|
|
|
req_body = nil
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:streamGenerateContent?alt=sse&key=123"
|
|
|
|
stub_request(:post, url).with(
|
|
body:
|
|
proc do |_req_body|
|
|
req_body = _req_body
|
|
true
|
|
end,
|
|
).to_return(status: 200, body: response)
|
|
|
|
structured_response = nil
|
|
llm.generate("Hello", response_format: schema, user: user) do |partial|
|
|
structured_response = partial
|
|
end
|
|
|
|
expect(structured_response.read_buffered_property(:key)).to eq("Hello!\n there")
|
|
expect(structured_response.read_buffered_property(:num)).to eq(42)
|
|
|
|
parsed = JSON.parse(req_body, symbolize_names: true)
|
|
|
|
# Verify that schema is passed following Gemini API specs.
|
|
expect(parsed.dig(:generationConfig, :responseSchema)).to eq(
|
|
schema.dig(:json_schema, :schema).except(:additionalProperties),
|
|
)
|
|
expect(parsed.dig(:generationConfig, :responseMimeType)).to eq("application/json")
|
|
end
|
|
end
|
|
|
|
it "includes model params in the request" do
|
|
response = <<~TEXT
|
|
data: {"candidates": [{"content": {"parts": [{"text": "Hello"}],"role": "model"}}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": "! This is a simple response"}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 399,"totalTokenCount": 399},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
data: {"candidates": [{"content": {"parts": [{"text": ""}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 399,"candidatesTokenCount": 191,"totalTokenCount": 590},"modelVersion": "gemini-1.5-pro-002"}
|
|
|
|
TEXT
|
|
|
|
llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}")
|
|
url = "#{model.url}:streamGenerateContent?alt=sse&key=123"
|
|
|
|
output = []
|
|
|
|
stub_request(:post, url).with(
|
|
body: hash_including(generationConfig: { temperature: 0.2 }),
|
|
).to_return(status: 200, body: response)
|
|
|
|
llm.generate("Hello", user: user, temperature: 0.2) { |partial| output << partial }
|
|
|
|
expect(output).to eq(["Hello", "! This is a simple response"])
|
|
end
|
|
end
|