--- description: GPU support in Compose keywords: documentation, docs, docker, compose, GPU access, NVIDIA, samples title: Enabling GPU access with Compose --- {% include compose-eol.md %} Compose services can define GPU device reservations if the Docker host contains such devices and the Docker Daemon is set accordingly. For this, make sure you install the [prerequisites](../config/containers/resource_constraints.md#gpu){: target="_blank" rel="noopener" class="_" } if you have not already done so. The examples in the following sections focus specifically on providing service containers access to GPU devices with Docker Compose. You can use either `docker-compose` or `docker compose` commands. For more information, see [Evolution of Compose](compose-v2/index.md){: target="_blank" rel="noopener" class="_" }. ### Enabling GPU access to service containers GPUs are referenced in a `docker-compose.yml` file using the [device](compose-file/deploy.md#devices){:target="_blank" rel="noopener" class="_"} structure, within your services that need them. This provides more granular control over a GPU reservation as custom values can be set for the following device properties: - `capabilities`. This value specifies as a list of strings (eg. `capabilities: [gpu]`). You must set this field in the Compose file. Otherwise, it returns an error on service deployment. - `count`. This value specified as an integer or the value `all` representing the number of GPU devices that should be reserved (providing the host holds that number of GPUs). If no `count` is set, all GPUs available on the host are used by default. - `device_ids`. This value specified as a list of strings representing GPU device IDs from the host. You can find the device ID in the output of `nvidia-smi` on the host. If no `device_ids` are set, all GPUs available on the host used by default. - `driver`. This value is specified as a string, for example `driver: 'nvidia'` - `options`. Key-value pairs representing driver specific options. > **Important** > > You must set the `capabilities` field. Otherwise, it returns an error on service deployment. > > `count` and `device_ids` are mutually exclusive. You must only define one field at a time. {: .important} For more information on these properties, see the `deploy` section in the [Compose Specification](compose-file/deploy.md#devices){:target="_blank" rel="noopener" class="_"}. #### Example of a Compose file for running a service with access to 1 GPU device: ```yaml services: test: image: nvidia/cuda:10.2-base command: nvidia-smi deploy: resources: reservations: devices: - driver: nvidia count: 1 capabilities: [gpu] ``` Run with Docker Compose: ```console $ docker compose up Creating network "gpu_default" with the default driver Creating gpu_test_1 ... done Attaching to gpu_test_1 test_1 | +-----------------------------------------------------------------------------+ test_1 | | NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.1 | test_1 | |-------------------------------+----------------------+----------------------+ test_1 | | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | test_1 | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | test_1 | | | | MIG M. | test_1 | |===============================+======================+======================| test_1 | | 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 | test_1 | | N/A 23C P8 9W / 70W | 0MiB / 15109MiB | 0% Default | test_1 | | | | N/A | test_1 | +-------------------------------+----------------------+----------------------+ test_1 | test_1 | +-----------------------------------------------------------------------------+ test_1 | | Processes: | test_1 | | GPU GI CI PID Type Process name GPU Memory | test_1 | | ID ID Usage | test_1 | |=============================================================================| test_1 | | No running processes found | test_1 | +-----------------------------------------------------------------------------+ gpu_test_1 exited with code 0 ``` On machines hosting multiple GPUs, `device_ids` field can be set to target specific GPU devices and `count` can be used to limit the number of GPU devices assigned to a service container. You can use `count` or `device_ids` in each of your service definitions. An error is returned if you try to combine both, specify an invalid device ID, or use a value of count that’s higher than the number of GPUs in your system. ```console $ nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 00000000:00:1B.0 Off | 0 | | N/A 72C P8 12W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 Tesla T4 On | 00000000:00:1C.0 Off | 0 | | N/A 67C P8 11W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 2 Tesla T4 On | 00000000:00:1D.0 Off | 0 | | N/A 74C P8 12W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 3 Tesla T4 On | 00000000:00:1E.0 Off | 0 | | N/A 62C P8 11W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ ``` ### Access specific devices To enable access only to GPU-0 and GPU-3 devices: ```yaml services: test: image: tensorflow/tensorflow:latest-gpu command: python -c "import tensorflow as tf;tf.test.gpu_device_name()" deploy: resources: reservations: devices: - driver: nvidia device_ids: ['0', '3'] capabilities: [gpu] ```