
Docker Notary
Application Penetration Test

Prepared for:

Prepared by:

Tom Ritter

Aleks Kircanski

Tyler Curtis

Cryptography Services Final Report — Docker Notary Page 2 of 23

©2015, NCC Group, Inc.

Prepared by NCC Group, Inc. for Docker. Portions of this document and the templates used in its production are

the property of NCC Group, Inc. and can not be copied without permission.

While precautions have been taken in the preparation of this document, NCC Group, Inc, the publisher, and the

author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the information

contained herein. Use of NCC Group services does not guarantee the security of a system, or that computer

intrusions will not occur.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 3 of 23

Table of Contents

1 Executive Summary . 4

1.1 Cryptography Services Risk Summary . 5

1.2 Project Summary . 6

1.3 Findings Summary . 6

1.4 Recommendations Summary . 7

2 Engagement Structure . 8

2.1 Internal and External Teams . 8

2.2 Project Goals and Scope . 9

3 Detailed Findings . 10

3.1 Classifications . 10

3.2 Vulnerabilities . 12

3.3 Detailed Vulnerability List . 13

Appendices . 21

A Non-Security Suggestions . 21

A.1 Defense in Depth . 21

A.2 Unusual Self-DoS . 21

B Key Compromise Analysis . 22

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 4 of 23

1 Executive Summary

Application Summary

Application Name Notary

Application Version 1.0

Application Type Go

Engagement Summary

Dates July 27, 2015 – July 31, 2015

Consultants Engaged 3

Total Engagement Effort 3 person-weeks

Engagement Type Application Penetration Test

Testing Methodology White Box

Vulnerability Summary

Total High severity issues 2

Total Medium severity issues 0

Total Low severity issues 4

Total Informational severity issues 2

Total vulnerabilities identified: 8

See section 3.1 on page 10 for descriptions of these classifications.

Category Breakdown:

Access Controls 0

Auditing and Logging 0

Authentication 1 �

Configuration 1 �

Cryptography 1 �

Data Exposure 3 ���

Data Validation 0

Denial of Service 1 �

Error Reporting 1 �

Patching 0

Session Management 0

Timing 0

July 31, 2015 Docker Version 1.1

H
ig

h

Attack Sophistication

B
u

s
in

e
s

s
 R

is
k

L
o
w

Simple Difficult

©2008 iSEC Partners, Inc.

• Signature algorithm not matched to key

• Compromise of Authority Keys

allows extended freeze/compromise

• Temporary access to Timestamp, Snapshot, or

Targets key enables persistent lockout

• Notary Signer server lacks authentication

• Secret data not zeroed after use

• HSM PIN supplied via command line

Cryptography Services Final Report — Docker Notary Page 5 of 23

1.1 Cryptography Services Risk Summary

The Cryptography Services (CS) Risk Summary chart evaluates vulnerabilities according to business

risk. The impact of the vulnerability increases towards the bottom of the chart. The sophistication

required for an attacker to find and exploit the flaw decreases towards the left of the chart. The closer

a vulnerability is to the chart origin, the greater the business risk.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 6 of 23

1.2 Project Summary

Docker engaged NCC Group to perform a review of the Notary system. Notary is a new, fully open-

source solution for signing Docker images. Notary allows publishers to manage and sign their own

images, using keys that they manage. NCC Group's Cryptography Services (``CS'') reviewed the secu-

rity of Notary's cryptographic and application aspects. The engagement began on July 27, 2015 and

concluded on July 31, 2015. Three consultants worked on the project during one calendar week. In

addition, one intern assisted the project. The following core items were looked into:

• Notary Client/Server

• Notary Signer

• The Update Framework's (TUF) use within Notary

The efforts CS provided during this review should not be considered a comprehensive review of the

complete Notary system. Due to the complexity of the TUF library and its use within Notary, the time

allotted did not allow an exhaustive review. The area of least review was the user's interaction with the

notary client application, while the area that received the most was the gotuf library.

CS reviewed the Notary framework for TUF specific issues, general cryptographic concerns and poten-

tial vulnerabilities common for client/server applications. The review of notary and the gotuf library

were primarily performed through source code review.

1.3 Findings Summary

In the gotuf library, the finding with the most impact was a signature confusion attack listed in find-

ing 1 on page 13. This could allow an attacker to forge signatures by tricking a client into interpreting

one encryption algorithm's key as another algorithm's key. For instance, if a RSA-PSS key is mis-

interpreted as an ed25519 key, the attacker may be able to perform the Elliptic Curve Discrete Log

algorithm to recover the private key corresponding to this (weak) ed25519 key, and sign documents

with it.

The other findings in the gotuf library relate to conditions that occur if one or more of the authority

keys is compromised. In finding 3 on page 15, a scenario in which an attacker who compromises the

Timestamp Authority key and signs a document with a version number that is excessively high is

discussed. It is shown that such an attacker who has stolen an authority key can lock the user out from

updating as the version number cannot be exceeded. A lack of expiry verification on the root keys is

reported in finding 2 on page 14. This allows an attacker who manages to compromise the Timestamp,

Snapshot and Target Keys to continue to operate the repository as per usual and add malicious files.

As shown in finding 4 on page 16, there is a lack of authentication in the Notary Signer service. An

attackerwho is able to access theNotary Signer network can perform arbitrary signatureswith arbitrary

keys stored in the database as well as remove and add new keys.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 7 of 23

1.4 Recommendations Summary

Short Term

Short term recommendations are meant to be relatively easy actions to execute, such as configuration

changes or file deletions that resolve security vulnerabilities. These may also include more difficult

actions that should be taken immediately to resolve high-risk vulnerabilities. This area is a summary of

short term recommendations; additional recommendations can be found in the vulnerabilities section.

Deprecate anddocument use of PrefixHashes. Prefixes hashesmay inadvertently open new folders

up to control by unauthorized persons, if the folder added happens to contain a hash prefix that another

role is authorized for. This model makes it extremely dangerous to use prefix hashes if folders are

expected to be added to a hierarchy in the future.

Add authentication to the Notary Server. Even though the Notary Signer is meant to be behind

firewalls and only accessible from the Notary Server host, different deployments of the Notary system

may not respect this. Require strong authentication tokens when executing the Notary Signer API

functions.

Long Term

Long term recommendations are more complex and systematic changes that should be taken to secure

the system. These may include significant changes to the architecture or code and may therefore

require in-depth planning, complex testing, significant development time, or changes to the user

experience that require retraining.

Specify themaximum expiry time allowed for each key in the root document. This will limit the

impact of a compromise of any individual key to this maximum expiry date.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 8 of 23

2 Engagement Structure

2.1 Internal and External Teams

The Cryptography Services team has the following primary members:

• Tom Ritter — Security Consultant

• Aleks Kircanski — Security Consultant

• Tyler Curtis — Security Consultant

• Nik Kinkel — Security Consultant

The Docker team has the following primary members:

• Nathan McCauley — Docker

• Diogo Mónica — Docker

• David Lawrence — Docker

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 9 of 23

2.2 Project Goals and Scope

As part of the primary goals of this engagement, NCC Group

• Reviewed cryptographic solutions applied to ensure the integrity of signing in Notary

• Reviewed Notary's reliance on The Update Framework (TUF)

• Reviewed functional and design documentation describing the usage of encryption and verifiers

considering both security and functional requirements customized to the particular deployment

of these cryptographic implementations

• Analyzed the planned use cases and assurance desired of the system in comparison to the design

documents and libraries in use

• Identified other common application vulnerabilities

Inmore detail, reviewing Notary's cryptographic solutions included verifying encryption/signing algo-

rithms in use, use of secure randomness, key provisioning distribution and management, appropriate

cryptographic algorithm parameters, protocol sequences and data flows.

While searching for common application vulnerabilities in client/server, NCC Group performed the

following:

• Analyzed any applicable documentation

• Sentmalicious data through the user interface and through direct connections to the application

• Attempted to bypass and/or exploit security weaknesses in the authentication and authorization

mechanisms

• Searched for the ability to escalate privileges

• Identified security weaknesses that lead to access, unintended application usage, or loss of data

integrity

• Performed necessary supplemental research and development activities to support analysis

• Identified and validated potential vulnerabilities

• Prioritized vulnerabilities based on ease of exploit, level of effort to remediate, and severity of

impact if exploited

• Identified issues of immediate consequence and recommend solutions

• Developed long-term recommendations to enhance security

• Evaluated the deployment process

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 10 of 23

3 Detailed Findings

3.1 Classifications

The following section describes the classes, severities, and exploitation difficulty rating assigned to

each issue that CS identified.

Vulnerability Classes

Class Description

Access Controls Related to authorization of users, and assessment of rights

Auditing and Logging Related to auditing of actions, or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or software

Cryptography Related to mathematical protections for data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to the race conditions, locking, or order of operations

Severity Categories

Severity Description

Informational
The issue does not pose an immediate risk, but is relevant to secu-

rity best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low
The risk is relatively small, or is not a risk the customer has indicated

is important

Medium

Individual user's information is at risk, exploitation would be bad

for client's reputation, of moderate financial impact, possible legal

implications for client

High
Large numbers of users, very bad for client's reputation or serious

legal implications.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 11 of 23

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low
Commonly exploited, public tools exist or can be scripted that ex-

ploit this flaw

Medium
Attackers must write an exploit, or need an in depth knowledge of

a complex system

High

The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover

other weaknesses in order to exploit this issue

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 12 of 23

3.2 Vulnerabilities

The following table is a summary of vulnerabilities identified by CS. Subsequent pages of this report

detail each of the vulnerabilities, along with short and long term remediation advice.

Vulnerability Class Severity

1. Signature Algorithm Not Matched to Key Cryptography High

2. Compromise of Authority Keys Allows Extended

Freeze/Compromise
Data Exposure High

3. Temporary Access to Timestamp, Snapshot, or

Targets Key Enables Persistent Lockout
Denial of Service Low

4. Notary Signer Server Lacks Authentication Authentication Low

5. Secret Data Not Zeroed After Use Data Exposure Low

6. HSM PIN supplied via command line Configuration Low

7. Named Collections Directory is World Readable Data Exposure Informational

8. Failure to Load Notary Server TLS Certificate

Disables TLS
Error Reporting Informational

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 13 of 23

3.3 Detailed Vulnerability List

1. Signature Algorithm Not Matched to Key

Class: Cryptography Severity: High Difficulty: Medium

FINDING ID: CS-DRNT15-1

TARGETS:

gotuf/signed/verify.go:VerifySignatures(),

gotuf/signed/verify.go:VerifyRoot()

DESCRIPTION: In the VerifySignatures and VerifyRoot functions, after a key is retrieved from

the database, the attacker-controlled Method attribute (containing the signature algorithm) is used

to determine which signature verifier is called. Although the attacker cannot control the key, they may

be able to forge a signature when the public key for one algorithm is interpreted as the public key for

another. In the individual Key Verifier methods, the Public Key is not consistently checked to assert

that it is of the correct type for this verification function.

This type of vulnerability is very similar to an attack on SSL 3.0 described by Wagner and Schneier,1

where a public key of one algorithm is detected as a public key of another. This flaw was relived in

20122 and, although less directly related, again in 2015.3

EXPLOIT SCENARIO: An attacker changes an RSA-PSS key to claim the ed25519 algorithm. The Ed255

19Verifier does not check that the key is of the correct type, so an attacker interprets the RSA public

key as an ed25519 public key, and is able to perform the Elliptic Curve Discrete Log problem to recover

the private key. This ed25519 keypair is weak and insecure, but could be used to forge signatures within

the context of gotuf.

SHORT TERM SOLUTION: Two steps should be taken to address this flaw:

1. The attacker-controlled signature method should not be used to look up the verification func-

tion, but rather the algorithm for the public key retrieved from the database.

2. Each verification function should perform a type-check to assert that it is being called with a key

of the correct type.

LONG TERM SOLUTION: Consider annotating or hiding the Method field on a Signature to ensure that

it is not used in the future – the method should always be retrieved by the trusted public key stored in

the database, rather than the attacker-controlled value.

Note: Docker resolved this issue during the engagement by adding the checks to the verification

functions. The sig method is needed to determine which flavor of signing is expected for the same

key type (RSA-PSS vs PKCS#1v1.5)

1https://www.schneier.com/paper-ssl.pdf Section 4.4
2http://www.cosic.esat.kuleuven.be/publications/article-2216.pdf
3https://weakdh.org/

July 31, 2015 Docker Version 1.1

https://www.schneier.com/paper-ssl.pdf
http://www.cosic.esat.kuleuven.be/publications/article-2216.pdf
https://weakdh.org/

Cryptography Services Final Report — Docker Notary Page 14 of 23

2. Compromise of Authority Keys Allows Extended Freeze/Compromise

Class: Data Exposure Severity: High Difficulty: High

FINDING ID: CS-DRNT15-2

TARGETS: gotuf/client/client.go:checkRoot()

DESCRIPTION: A root.json file may be used by gotuf after expiry, as long as other files refer to it. If

an attacker compromises the other authority keys, they may choose to refer to an expired root.json

file that still lists them as the correct keys. The compromise of the other keys cannot be overridden

by the root key if the root document is never updated. The checkRoot(), which is in the critical path,

contains a comment that the expiry will be checked, but this check is not actually performed.

// checkRoot determines if the hash, and size are still those reported

// in the snapshot file. It will also check the expiry, however, if the

// hash and size in snapshot are unchanged but the root file has expired,

// there is little expectation that the situation can be remedied.

func (c Client) checkRoot() error {

role := data.RoleName("root")

size := c.local.Snapshot.Signed.Meta[role].Length

hashSha256 := c.local.Snapshot.Signed.Meta[role].Hashes["sha256"]

raw, err := c.cache.GetMeta("root", size)

if err != nil {

return err

}

hash := sha256.Sum256(raw)

if !bytes.Equal(hash[:], hashSha256) {

return fmt.Errorf("Cached root sha256 did not match snapshot root sha256")

}

return nil

}

Listing 1: checkRoot()

EXPLOIT SCENARIO: An attacker manages to compromise the Timestamp, Snapshot, and Target keys.

The legitimate operator is able to observe the key compromise, and produces an updated root.json

file to roll the keys, but the attacker producesmalicious update files that refer to the old root.json doc-

ument. The attacker is able to continue this process perpetually even after the root.json document

expires. In order to remain a degree of stealth, the attacker could continue to operate the repository

as per usual, and may even choose to track upstream development by supplying the user with updates

to the software (which contain the attacker's newest update of their rootkit as well).

SHORT TERM SOLUTION: Add a check for the expiry of the root document to this function, and if it

fails, re-download the root document.

LONG TERM SOLUTION: Ensure that expiry checks are performed consistently on all keys and docu-

ments.

Note: In Docker's deployment, the root.json file expires at the same time as the root key, which does

have it's expiration checked. Having a shorter-lived root.json file would enable rolling of the keys if

they were compromised, which would not be feasible with a long-lived root.json file. To address the

more generic use case, this check was added and confirmed before the completion of the engagement.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 15 of 23

3. Temporary Access to Timestamp, Snapshot, or Targets Key Enables Persistent Lockout

Class: Denial of Service Severity: Low Difficulty: High

FINDING ID: CS-DRNT15-3

TARGETS: gotuf/signed/client.go:Update()

DESCRIPTION: In the Update() function of client.go, if a timestamp, snapshot, or targets error

occurs, the Root will be downloaded and the update process restarted. However this only occurs if

certain errors occur – if others occur the entire update process aborts. While a network adversary

may persistently disrupt network communication, TUF is designed to be resilient in the face of a

transient network attacker. However, due to the retry mechanism, a temporary network attacker who

also compromises an authority key is able to persistently lock clients out from updating.

If they specify a large version number, the document will be accepted and cached by clients. When

the next, legitimate document comes in, it will be rejected with an ErrLowVersion error. This is an

unrecoverable error, and gotufwill abort attempting to update without downloading a new Root. The

only way to recover from this condition is to specify a document with the old (compromised) authority

key and a higher version number (which may be unknown).

func (c *Client) Update() error {

err := c.update()

if err != nil {

switch err.(type) {

case signed.ErrRoleThreshold, signed.ErrExpired, tuf.

ErrLocalRootExpired:

logrus.Debug("retryable error occurred. Root will be

downloaded and another update attempted")

if err := c.downloadRoot(); err != nil {

logrus.Errorf("client Update (Root):", err)

return err

}

default:

logrus.Error("an unexpected error occurred while updating TUF

client")

return err

}

logrus.Debug("retrying TUF client update")

return c.update()

}

return nil

}

Listing 2: The Update() function, with the affected switch statement

EXPLOIT SCENARIO: An attacker compromises the Timestamp Authority key, and signs a document

with a version specifying MaxInt32, the greatest Integer that can be processed in golang by gotuf. This

version number cannot be exceeded, and thus persistently fails, locking the user out from updating.

SHORT TERM SOLUTION: Add the ErrLowVersion error to the retry case. Additionally, when a new

Authority key is received, it should allow a one-time reset to 0 of the current version required for that

document.

LONGTERMSOLUTION: It is likely that the switch should be eliminated entirely to prevent a recurrence

of this vulnerability from occurring in the event of a different error.

Note: The switch statement was removed and confirmed after the completion of the engagement.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 16 of 23

4. Notary Signer Server Lacks Authentication

Class: Authentication Severity: Low Difficulty: Low

FINDING ID: CS-DRNT15-4

TARGETS: Notary Signer

DESCRIPTION: Notary Signer exposes an API that allows performing operations such as signing by

chosen keys, creating/deleting new keys and obtaining info about keys already existing in the database.

The service can be seen as a ``crypto anchor'' in the sense that it adds a level of indirection in the system

and allows not keeping the signing keys on the Notary server. This is a good practice, and provided

defense-in-depth; as the notary server becomes less privileged - but theminimal signing service should

be appropriately secured.

The Notary Signer API currently does not implement any form of authentication, which allows anyone

who has network access to the service to sign data with whatever keys are loaded into the signer. Even

a rudimentary form of authentication would provide some defense-in-depth for this service, and it is

not documented that it should be protected in some way.

EXPLOIT SCENARIO: An organization wishes to be at the forefront of Docker security and integration,

so its developers deployNotary andNotary Signer without performing a thorough review of the system.

An attacker who has compromised a work-from-home employee scans the internal network and finds

the Notary Signer service, and after googling is able to deduce the type of service that is operating.

They use it to sign malicious Docker images and masquerade as the organization, causing both the

organization and Notary to have embarrassing early coverage in the media.

SHORT TERM SOLUTION: To allow for a basic level of protection, add options to run Notary Signer over

HTTPS, and support HTTP Basic Authentication with a password specified in a config file. Document

the mode of authentication, need to change or set the password, and suggest network-level access

controls and other typical hardening in a real deployment.

LONGTERM SOLUTION: If Notary Signer is intended to be run by individuals or organizations, improve

the documentation to outline the important configuration changes necessary, the appropriate network

or infrastructure security requirements, as well as maintenance and logging expectations.

Note: CS confirmed with the Development Team that adding authentication is planned in future

releases. In the meantime, the service is expected to be firewalled off from the Internet and only

accessible by the Notary Server. Due to these reasons, the severity of this finding is reduced to Low.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 17 of 23

5. Secret Data Not Zeroed After Use

Class: Data Exposure Severity: Low Difficulty: High

FINDING ID: CS-DRNT15-5

TARGETS: Notary functions where secret data such as private keys, decryption passphrases, and HSM

pins are processed.

DESCRIPTION: If memory holding secret data is not explicitly overwritten before being garbage col-

lected, the secret data may stay in memory and remain accessible for an unspecified period of time.

Later memory allocations may return the data as uninitialized data.

Information such as private key material and encryption passphrases should be overwritten before the

corresponding variables are allowed to go out of scope, and ideally as soon as the data is no longer

needed for processing.

case data.ECDSAKey:

privKey, err = trustmanager.GenerateECDSAKey(rand.Reader)

default:

return "", fmt.Errorf("only RSA or ECDSA keys are currently supported. Found:

%s", algorithm)

}

if err != nil {

return "", fmt.Errorf("failed to generate private key: %v", err)

}

// Changing the root

km.rootKeyStore.AddKey(privKey.ID(), "root", privKey)

return privKey.ID(), nil

}

Listing 3: keystoremanager.go:GenRootKey(), key material in privkey not zeroed before garbage

collection.

EXPLOIT SCENARIO: A developer uses a cloud server shared with other virtual instances to publish

application updates using Notary. An attacker discovers an exploit in the underlying virtualization

software that allows the attacker to inspect the memory contents of all processes running on the

host machine. When the developer uses Notary to publish an update, the developer's private key

is decrypted and used to sign the update. The variable storing the private key is not zeroed after

use, and the raw key material remains in memory after the signature operation is performed. The

attacker inspects the memory of the Notary process, extracts the developer's private key, and publishes

a malicious application update.

SHORT TERM SOLUTION:Overwrite all sensitive data as soon as it is no longer needed for processing.

LONG TERM SOLUTION: Consider using a single mutable data type for all secret data, such as []byte.

Add a utility function that overwrites the contents of the data type with zeros, and call this utility

function on the variables storing sensitive data immediately after their contents are no longer needed.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 18 of 23

6. HSM PIN supplied via command line

Class: Configuration Severity: Low Difficulty: Low

FINDING ID: CS-DRNT15-6

TARGETS: The PIN for the Hardware Security Module (HSM) used by Notary Signer.

DESCRIPTION: The Notary Signer exposes a signing service by running an RPC server accessible over

HTTPS. The signer canmake use of HSM to perform the signing operations. TheHSMPIN is passed via

the command line, and, as such, is visible to other users on the system (by looking at other processes

on the system). Moreover, the PIN remains in shell history logs.

It should be noted that according one of the comments in cmd/notary-signed/main.go, the PIN will

be loaded from a config file. Ideally, the signer administrator should enter the PIN every time the

same way a passphrase is entered (interactively), without the need to store the PIN in the config file or

expose it via an environment variable.

EXPLOIT SCENARIO: A local user on the host that is running the notary-signer service runs ps aux

and can observe the commands run by root and their command-line arguments. They learn the HSM

PIN and are able to authenticate to it to perform operations on the HSM directly. They use this access

to exploit one of the documented insecurities4 in PKCS#11 interfaces to extract keys stored in the HSM.

SHORT TERM SOLUTION: Instead of passing the PIN via command line, have the user enter the PIN

via standard input or retrieve it from a configuration file. If a configuration file is used, warn against

non-interactive password use in the system logs, and have Notary check on startup that its permissions

allow least access.

LONG TERM SOLUTION: Document the threat model, and if protection against local users is desired.

If these concerns are considered out-of-scope, mark this and finding 7 on the next page as accepted

risks.

Note: Docker indicates that no trust is placed in the HSM PIN, and as such, its disclosure does not

affect the security of the system.

4http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.3442

July 31, 2015 Docker Version 1.1

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.3442

Cryptography Services Final Report — Docker Notary Page 19 of 23

7. Named Collections Directory is World Readable

Class: Data Exposure Severity: Informational

FINDING ID: CS-DRNT15-7

TARGETS: Notary Client

DESCRIPTION: The Notary Client uses the ~/.docker directory to store the current state of the Notary

client. For example, if a example.com/scripts named collection is initialized, a directory ~/.docker

/trust/trusted_certificates/example.com is created. As ~/.docker/trust/trusted_certifica

tes and its sub-directories are world readable, another user on the system can peek into which named

collections were initialized by the original user. It may be desirable to keep these names private to

avoid unnecessary information leakage.

Solution: Use the existing private FileMode when creating directories under ~/.docker, rather than

visible.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 20 of 23

8. Failure to Load Notary Server TLS Certificate Disables TLS

Class: Error Reporting Severity: Informational

FINDING ID: CS-DRNT15-9

TARGETS: notary/server/server.go:Run()

DESCRIPTION: The server's TLS certificate and key pair are loaded in the Run() function of server.go,

but if either fails to load for any reason, the server will fail open and will serve plaintext HTTP without

TLS. This may mislead users into believing the service is operating normally when that is not the case.

This situation could be triggered in any number of normal situations, such as permissions errors on

the private keyfile (such as attempting to run the daemon under a different user than the owner of the

key file) or typos in the path to the certificate or key file.

Solution: Fall back to HTTP without TLS only when explicit an HTTP configuration indicates so;

otherwise raise an error and abort start-up.

Note: This issue was resolved after the completion of the engagement.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 21 of 23

Appendices

A Non-Security Suggestions

During the review, CS documented several suggestions that do not directly pose any security concern,

but may be useful in a general-purpose Update Framework library.

A.1 Defense in Depth

A few areas were noted where the protocol specification or the implementation could preform some

defense-in-depth checks.

1. The ValidTUFType function could check that the type is the type expected as well as being some

valid type.

2. If a client knows about multiple hash algorithms, there is no reason not to validate the docu-

ments against the combination of all of them, rather than choosing the first the client knows

about. This technique can provide resilience when a hash algorithm weakens.

A.2 Unusual Self-DoS

If gotuf were used as a general-purpose library, a user could inadvertently lock themselves out of the

system in creative ways. While not strictly necessary, the library could check for and protect against

these edge cases.

1. If a root rollover occurs, and the new root contains two keys (not one) the ``as long as one

succeeded'' behavior of signed.VerifyRoot allows the second key to get stored in the database

without a self-signature. This function could be changed to accept a 'threshold' variable, which

on the first invocation would be '1' and on the second invocation would be the length of all-

ValidCerts.

2. It does not appear that there is any protection against someone foot-gunning themselves and

signing a document with a threshold for more keys than are specified. This would prevent any

future documents from being accepted, as the threshold can never be met.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 22 of 23

B Key Compromise Analysis

To determine the impact of certain vulnerabilities and their difficulty of exploitation, CS detailed the

security mechanisms used to protect each key, as well as the impact of different key compromises.

The first list, below, details how each authority key is used and protected. The following table, on the

next page, outlines several scenarios of key compromises, different attacker capabilities to perform a

man-in-the-middle attack, and whether each scenario allows different types of attacks.

• Timestamp Key - this key is administered by Docker. It is kept in a backend service that is

designed to be modular, such that it may be protected by a HSM, and so that compromise of

any front-end webservers do not lead to compromise of the key. The key is used when a user is

authenticated to Docker, thus compromise of a user's account, or any vulnerability that would

allow user impersonation may result in the Timestamp key being exercised in an unauthorized

manner.

• Snapshot and Target Keys - these keys held and administered by the user, and thus compromise

of them is largely dependent on the end-user security measured taken by the user. They are

password protected, and the Notary applications do not have any options that enable exporting

them in a plaintext format.

• Root Key - this key is also administered by the user, but Docker strongly recommends that this

key be kept offline.

July 31, 2015 Docker Version 1.1

Cryptography Services Final Report — Docker Notary Page 23 of 23

Two scenarios are presented, one where an attacker compromises a key and maintains persistent

network access to a victim, and one where an attacker compromises a key and has only temporary

network access to a victim.

Malicious

Updates
Freeze Attack MetaData

Inconsistency

Attack

Denial of

Service

Timestamp Key No Yes, limited by

earliest expiry

No Yes, finding 3

Snapshot Key No No No ↓
Timestamp

& Snapshot

No Yes, limited by

earliest target ex-

piry

Yes ↓

Targets Key No No No ↓
Snapshot &

Target

Likely5 Yes, limited by

root expiry12
Yes, limited by

root expiry12
↓

Timestamp,

Snapshot, &

Target

Yes, temporary Yes, limited by

root expiry12
Yes, limited by

root expiry12
↓

Root Key Yes, permanent34 Yes Yes Yes3

Table 1: Temporary Network Access

Malicious

Updates

Freeze Attack MetaData

Inconsistency

Attack

Denial of

Service

Timestamp Key No Yes, limited by

earliest expiry

No Yes, finding 3

Snapshot Key No No No ↓
Timestamp

& Snapshot

No Yes, limited by

earliest target ex-

piry

Yes ↓

Targets Key No No No ↓
Snapshot &

Target

Likely5 Yes, limited by

root expiry12
Yes, limited by

root expiry12
↓

Timestamp,

Snapshot, &

Target

Yes, limited by

root expiry2
Yes, limited by

root expiry2
Yes, limited by

root expiry2
↓

Root Key Yes Yes Yes Yes3

Table 2: Persistent Network Access

1: Because no maximum expiry values specified at the Root level, a far-future document will be cached

and used indefinitely.
2: Finding 2 details how, prior to patching by Docker, a Root update would not occur even if the Root

document was expired.
3: An attacker could purposefully roll the root key to a new one.
4: Note that although indicated as ``permanent'', an attacker would also need to have persistent access

to placing files into the software repository to actually exploit this.
5: Compromise of only the Snapshot & Target keys does not allow malicious updates, as the attacker

must also compromise the Timestamp key. However, Docker operates the Timestamp key on behalf of

a user, and an attacker who compromises the user's keys would likely be able to compromise the user's

Docker account as well, and fool Docker into operating that key to achieve malicious updates.

July 31, 2015 Docker Version 1.1

	Executive Summary
	Cryptography Services Risk Summary
	Project Summary
	Findings Summary
	Recommendations Summary

	Engagement Structure
	Internal and External Teams
	Project Goals and Scope

	Detailed Findings
	Classifications
	Vulnerabilities
	Detailed Vulnerability List

	Appendices
	Non-Security Suggestions
	Defense in Depth
	Unusual Self-DoS

	Key Compromise Analysis

