Add Contour usage docs and diagrams

This commit is contained in:
stefanprodan 2019-12-20 11:47:44 +02:00
parent 4288fa261c
commit ad0a66ffcc
3 changed files with 402 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

View File

@ -0,0 +1,402 @@
# Contour Canary Deployments
This guide shows you how to use the Contour ingress controller and Flagger to automate canary releases and A/B testing.
![Flagger Contour Overview](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/diagrams/flagger-contour-overview.png)
### Prerequisites
Flagger requires a Kubernetes cluster **v1.11** or newer and Contour **v1.0** or newer.
Install Contour on a cluster with LoadBalancer support:
```bash
kubectl apply -f https://projectcontour.io/quickstart/contour.yaml
```
The above command will deploy Contour and an Envoy daemonset in the `projectcontour` namespace.
Install Flagger using Kustomize (kubectl 1.14) in the `projectcontour` namespace:
```bash
kubectl apply -k github.com/weaveworks/flagger//kustomize/contour
```
The above command will deploy Flagger and Prometheus configured to scrape the Contour's Envoy instances.
You can also enable Slack or MS Teams notifications,
see the Kustomize install [docs](https://docs.flagger.app/install/flagger-install-on-kubernetes#install-flagger-with-kustomize).
You can install Flagger using Helm v2 or v3:
```sh
helm repo add flagger https://flagger.app
helm upgrade -i flagger flagger/flagger \
--namespace projectcontour \
--set meshProvider=contour \
--set prometheus.install=true \
--set slack.url=https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK \
--set slack.channel=general \
--set slack.user=flagger
```
### Bootstrap
Flagger takes a Kubernetes deployment and optionally a horizontal pod autoscaler (HPA),
then creates a series of objects (Kubernetes deployments, ClusterIP services and Contour HTTPProxy).
These objects expose the application in the cluster and drive the canary analysis and promotion.
Create a test namespace:
```bash
kubectl create ns test
```
Install the load testing service to generate traffic during the canary analysis:
```bash
kubectl apply -k github.com/weaveworks/flagger//kustomize/tester
```
Create a deployment and a horizontal pod autoscaler:
```bash
kubectl apply -k github.com/weaveworks/flagger//kustomize/podinfo
```
Create a canary custom resource:
```yaml
apiVersion: flagger.app/v1alpha3
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
# deployment reference
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
# HPA reference
autoscalerRef:
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
name: podinfo
service:
# service port
port: 80
# container port
targetPort: 9898
# Contour request timeout
timeout: 15s
# Contour retry policy
retries:
attempts: 3
perTryTimeout: 5s
# define the canary analysis timing and KPIs
canaryAnalysis:
# schedule interval (default 60s)
interval: 30s
# max number of failed metric checks before rollback
threshold: 5
# max traffic percentage routed to canary
# percentage (0-100)
maxWeight: 50
# canary increment step
# percentage (0-100)
stepWeight: 5
# Contour Prometheus checks
metrics:
- name: request-success-rate
# minimum req success rate (non 5xx responses)
# percentage (0-100)
threshold: 99
interval: 1m
- name: request-duration
# maximum req duration P99
# milliseconds
threshold: 500
interval: 30s
# testing
webhooks:
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 30s
metadata:
type: bash
cmd: "curl -sd 'test' http://podinfo-canary.test/token | grep token"
- name: load-test
url: http://flagger-loadtester.test/
type: rollout
timeout: 5s
metadata:
cmd: "hey -z 1m -q 10 -c 2 -host app.example.com http://envoy.projectcontour"
```
Save the above resource as podinfo-canary.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-canary.yaml
```
When the canary analysis starts, Flagger will call the pre-rollout webhooks before routing traffic to the canary.
The canary analysis will run for five minutes while validating the HTTP metrics and rollout hooks every half a minute.
After a couple of seconds Flagger will create the canary objects:
```bash
# applied
deployment.apps/podinfo
horizontalpodautoscaler.autoscaling/podinfo
canary.flagger.app/podinfo
# generated
deployment.apps/podinfo-primary
horizontalpodautoscaler.autoscaling/podinfo-primary
service/podinfo
service/podinfo-canary
service/podinfo-primary
httpproxy.projectcontour.io/podinfo
```
After the boostrap, the podinfo deployment will be scaled to zero and the traffic to `podinfo.test` will be routed
to the primary pods. During the canary analysis, the `podinfo-canary.test` address can be used to target directly the canary pods.
### Expose the app outside the cluster
Find the external address of Contour's Envoy load balancer:
```bash
export ADDRESS="$(kubectl -n projectcontour get svc/envoy -ojson | jq -r ".status.loadBalancer.ingress[].hostname")"
echo $ADDRESS
```
Configure your DNS server with a CNAME record (AWS) or A record (GKE) and point a domain e.g. `app.example.com` to the LB address.
Create a HTTPProxy definition and include the podinfo proxy generated by Flagger (replace `app.example.com` with your own domain):
```yaml
apiVersion: projectcontour.io/v1
kind: HTTPProxy
metadata:
name: podinfo-ingress
namespace: test
spec:
virtualhost:
fqdn: app.example.com
includes:
- name: podinfo
namespace: test
conditions:
- prefix: /
```
Save the above resource as podinfo-ingress.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-ingress.yaml
```
Verify that Contour processed the proxy definition with:
```sh
kubectl -n test get httpproxies
NAME FQDN STATUS
podinfo valid
podinfo-ingress app.example.com valid
```
Now you can access podinfo using your domain address.
### Automated canary promotion
Flagger implements a control loop that gradually shifts traffic to the canary while measuring key performance indicators
like HTTP requests success rate, requests average duration and pod health.
Based on analysis of the KPIs a canary is promoted or aborted.
![Flagger Canary Stages](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/diagrams/flagger-canary-steps.png)
A canary deployment is triggered by changes in any of the following objects:
* Deployment PodSpec (container image, command, ports, env, resources, etc)
* ConfigMaps and Secrets mounted as volumes or mapped to environment variables
Trigger a canary deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.1
```
Flagger detects that the deployment revision changed and starts a new rollout:
```text
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 0
Phase: Succeeded
Events:
New revision detected! Scaling up podinfo.test
Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
Pre-rollout check acceptance-test passed
Advance podinfo.test canary weight 5
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 15
Advance podinfo.test canary weight 20
Advance podinfo.test canary weight 25
Advance podinfo.test canary weight 30
Advance podinfo.test canary weight 35
Advance podinfo.test canary weight 40
Advance podinfo.test canary weight 45
Advance podinfo.test canary weight 50
Copying podinfo.test template spec to podinfo-primary.test
Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Routing all traffic to primary
Promotion completed! Scaling down podinfo.test
```
When the canary analysis starts, Flagger will call the pre-rollout webhooks before routing traffic to the canary.
**Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis.
You can monitor all canaries with:
```bash
watch kubectl get canaries --all-namespaces
NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
test podinfo Progressing 15 2019-12-20T14:05:07Z
```
If youve enabled the Slack notifications, you should receive the following messages:
![Flagger Slack Notifications](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/screens/slack-canary-notifications.png)
### Automated rollback
During the canary analysis you can generate HTTP 500 errors or high latency to test if Flagger pauses the rollout.
Trigger a canary deployment:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.2
```
Exec into the load tester pod with:
```bash
kubectl -n test exec -it deploy/flagger-loadtester bash
```
Generate HTTP 500 errors:
```bash
hey -z 1m -c 5 -q 5 http://app.example.com/status/500
```
Generate latency:
```bash
watch -n 1 curl http://app.example.com/delay/1
```
When the number of failed checks reaches the canary analysis threshold, the traffic is routed back to the primary,
the canary is scaled to zero and the rollout is marked as failed.
```text
kubectl -n projectcontour logs deploy/flagger -f | jq .msg
New revision detected! Starting canary analysis for podinfo.test
Pre-rollout check acceptance-test passed
Advance podinfo.test canary weight 5
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 15
Halt podinfo.test advancement success rate 69.17% < 99%
Halt podinfo.test advancement success rate 61.39% < 99%
Halt podinfo.test advancement success rate 55.06% < 99%
Halt podinfo.test advancement request duration 1.20s > 0.5s
Halt podinfo.test advancement request duration 1.45s > 0.5s
Rolling back podinfo.test failed checks threshold reached 5
Canary failed! Scaling down podinfo.test
```
If youve enabled the Slack notifications, youll receive a message if the progress deadline is exceeded,
or if the analysis reached the maximum number of failed checks:
![Flagger Slack Notifications](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/screens/slack-canary-failed.png)
### A/B Testing
Besides weighted routing, Flagger can be configured to route traffic to the canary based on HTTP match conditions.
In an A/B testing scenario, you'll be using HTTP headers or cookies to target a certain segment of your users.
This is particularly useful for frontend applications that require session affinity.
![Flagger A/B Testing Stages](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/diagrams/flagger-abtest-steps.png)
Edit the canary analysis, remove the max/step weight and add the match conditions and iterations:
```yaml
canaryAnalysis:
interval: 1m
threshold: 5
iterations: 10
match:
- headers:
x-canary:
exact: "insider"
webhooks:
- name: load-test
url: http://flagger-loadtester.test/
metadata:
cmd: "hey -z 1m -q 5 -c 5 -H 'X-Canary: insider' -host app.example.com http://envoy.projectcontour"
```
The above configuration will run an analysis for ten minutes targeting users that have a `X-Canary: insider` header.
You can also use a HTTP cookie. To target all users with a cookie set to `insider`, the match condition should be:
```yaml
match:
- headers:
cookie:
suffix: "insider"
webhooks:
- name: load-test
url: http://flagger-loadtester.test/
metadata:
cmd: "hey -z 1m -q 5 -c 5 -H 'Cookie: canary=insider' -host app.example.com http://envoy.projectcontour"
```
Trigger a canary deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.3
```
Flagger detects that the deployment revision changed and starts the A/B test:
```text
kubectl -n appmesh-system logs deploy/flagger -f | jq .msg
New revision detected! Starting canary analysis for podinfo.test
Advance podinfo.test canary iteration 1/10
Advance podinfo.test canary iteration 2/10
Advance podinfo.test canary iteration 3/10
Advance podinfo.test canary iteration 4/10
Advance podinfo.test canary iteration 5/10
Advance podinfo.test canary iteration 6/10
Advance podinfo.test canary iteration 7/10
Advance podinfo.test canary iteration 8/10
Advance podinfo.test canary iteration 9/10
Advance podinfo.test canary iteration 10/10
Copying podinfo.test template spec to podinfo-primary.test
Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Routing all traffic to primary
Promotion completed! Scaling down podinfo.test
```