# Skipper Canary Deployments This guide shows you how to use the [Skipper ingress controller](https://opensource.zalando.com/skipper/kubernetes/ingress-controller/) and Flagger to automate canary deployments. ![Flagger Skipper Ingress Controller](https://raw.githubusercontent.com/fluxcd/flagger/main/docs/diagrams/flagger-skipper-overview.png) ## Prerequisites Flagger requires a Kubernetes cluster **v1.19** or newer and Skipper ingress **v0.13** or newer. Install Skipper ingress-controller using [upstream definition](https://opensource.zalando.com/skipper/kubernetes/ingress-controller/#install-skipper-as-ingress-controller). Certain arguments are relevant: ```yaml - -enable-connection-metrics - -histogram-metric-buckets=.01,1,10,100 - -kubernetes - -kubernetes-in-cluster - -kubernetes-path-mode=path-prefix - -metrics-exp-decay-sample - -metrics-flavour=prometheus - -route-backend-metrics - -route-backend-error-counters - -route-response-metrics - -serve-host-metrics - -serve-route-metrics - -whitelisted-healthcheck-cidr=0.0.0.0/0 # permit Kind source health checks ``` Install Flagger using kustomize: ```bash kustomize build https://github.com/fluxcd/flagger/kustomize/kubernetes | kubectl apply -f - ``` ## Bootstrap Flagger takes a Kubernetes deployment and optionally a horizontal pod autoscaler (HPA), then creates a series of objects (Kubernetes deployments, ClusterIP services and canary ingress). These objects expose the application outside the cluster and drive the canary analysis and promotion. Create a test namespace: ```bash kubectl create ns test ``` Create a deployment and a horizontal pod autoscaler: ```bash kubectl apply -k https://github.com/fluxcd/flagger//kustomize/podinfo?ref=main ``` Deploy the load testing service to generate traffic during the canary analysis: ```bash helm upgrade -i flagger-loadtester flagger/loadtester \ --namespace=test ``` Create an ingress definition \(replace `app.example.com` with your own domain\): ```yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: podinfo namespace: test labels: app: podinfo annotations: kubernetes.io/ingress.class: "skipper" spec: rules: - host: "app.example.com" http: paths: - pathType: Prefix path: "/" backend: service: name: podinfo port: number: 80 ``` Save the above resource as podinfo-ingress.yaml and then apply it: ```bash kubectl apply -f ./podinfo-ingress.yaml ``` Create a canary custom resource (replace `app.example.com` with your own domain): ```yaml apiVersion: flagger.app/v1beta1 kind: Canary metadata: name: podinfo namespace: test spec: provider: skipper # deployment reference targetRef: apiVersion: apps/v1 kind: Deployment name: podinfo # ingress reference ingressRef: apiVersion: networking.k8s.io/v1 kind: Ingress name: podinfo # HPA reference (optional) autoscalerRef: apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler name: podinfo # the maximum time in seconds for the canary deployment # to make progress before it is rollback (default 600s) progressDeadlineSeconds: 60 service: # ClusterIP port number port: 80 # container port number or name targetPort: 9898 analysis: # schedule interval (default 60s) interval: 10s # max number of failed metric checks before rollback threshold: 10 # max traffic percentage routed to canary # percentage (0-100) maxWeight: 50 # canary increment step # percentage (0-100) stepWeight: 5 # Skipper Prometheus checks metrics: - name: request-success-rate interval: 1m # minimum req success rate (non 5xx responses) # percentage (0-100) thresholdRange: min: 99 - name: request-duration interval: 1m # maximum req duration P99 # milliseconds thresholdRange: max: 500 webhooks: - name: gate type: confirm-rollout url: http://flagger-loadtester.test/gate/approve - name: acceptance-test type: pre-rollout url: http://flagger-loadtester.test/ timeout: 10s metadata: type: bash cmd: "curl -sd 'test' http://podinfo-canary/token | grep token" - name: load-test type: rollout url: http://flagger-loadtester.test/ timeout: 5s metadata: type: cmd cmd: "hey -z 10m -q 10 -c 2 -host app.example.com http://skipper-ingress.kube-system" logCmdOutput: "true" ``` Save the above resource as podinfo-canary.yaml and then apply it: ```bash kubectl apply -f ./podinfo-canary.yaml ``` After a couple of seconds Flagger will create the canary objects: ```bash # applied deployment.apps/podinfo horizontalpodautoscaler.autoscaling/podinfo ingress.networking.k8s.io/podinfo-ingress canary.flagger.app/podinfo # generated deployment.apps/podinfo-primary horizontalpodautoscaler.autoscaling/podinfo-primary service/podinfo service/podinfo-canary service/podinfo-primary ingress.networking.k8s.io/podinfo-canary ``` ## Automated canary promotion Flagger implements a control loop that gradually shifts traffic to the canary while measuring key performance indicators like HTTP requests success rate, requests average duration and pod health. Based on analysis of the KPIs a canary is promoted or aborted, and the analysis result is published to Slack or MS Teams. ![Flagger Canary Stages](https://raw.githubusercontent.com/fluxcd/flagger/main/docs/diagrams/flagger-canary-steps.png) Trigger a canary deployment by updating the container image: ```bash kubectl -n test set image deployment/podinfo \ podinfod=stefanprodan/podinfo:4.0.6 ``` Flagger detects that the deployment revision changed and starts a new rollout: ```text kubectl -n test describe canary/podinfo Status: Canary Weight: 0 Failed Checks: 0 Phase: Succeeded Events: New revision detected! Scaling up podinfo.test Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available Pre-rollout check acceptance-test passed Advance podinfo.test canary weight 5 Advance podinfo.test canary weight 10 Advance podinfo.test canary weight 15 Advance podinfo.test canary weight 20 Advance podinfo.test canary weight 25 Advance podinfo.test canary weight 30 Advance podinfo.test canary weight 35 Advance podinfo.test canary weight 40 Advance podinfo.test canary weight 45 Advance podinfo.test canary weight 50 Copying podinfo.test template spec to podinfo-primary.test Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available Routing all traffic to primary Promotion completed! Scaling down podinfo.test ``` **Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis. You can monitor all canaries with: ```bash watch kubectl get canaries --all-namespaces NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME test podinfo-2 Progressing 30 2020-08-14T12:32:12Z test podinfo Succeeded 0 2020-08-14T11:23:88Z ``` ## Automated rollback During the canary analysis you can generate HTTP 500 errors to test if Flagger pauses and rolls back the faulted version. Trigger another canary deployment: ```bash kubectl -n test set image deployment/podinfo \ podinfod=stefanprodan/podinfo:4.0.6 ``` Exec into the load tester pod with: ```bash kubectl -n test exec -it deploy/flagger-loadtester bash ``` Generate HTTP 500 errors: ```bash hey -z 1m -c 5 -q 5 http://app.example.com/status/500 ``` Generate latency: ```bash watch -n 1 curl http://app.example.com/delay/1 ``` When the number of failed checks reaches the canary analysis threshold, the traffic is routed back to the primary, the canary is scaled to zero and the rollout is marked as failed. ```text kubectl -n flagger-system logs deploy/flagger -f | jq .msg New revision detected! Scaling up podinfo.test Canary deployment podinfo.test not ready: waiting for rollout to finish: 0 of 1 updated replicas are available Starting canary analysis for podinfo.test Pre-rollout check acceptance-test passed Advance podinfo.test canary weight 5 Advance podinfo.test canary weight 10 Advance podinfo.test canary weight 15 Advance podinfo.test canary weight 20 Halt podinfo.test advancement success rate 53.42% < 99% Halt podinfo.test advancement success rate 53.19% < 99% Halt podinfo.test advancement success rate 48.05% < 99% Rolling back podinfo.test failed checks threshold reached 3 Canary failed! Scaling down podinfo.test ``` ## Custom metrics The canary analysis can be extended with Prometheus queries. Create a metric template and apply it on the cluster: ```yaml apiVersion: flagger.app/v1beta1 kind: MetricTemplate metadata: name: latency namespace: test spec: provider: type: prometheus address: http://flagger-prometheus.flagger-system:9090 query: | histogram_quantile(0.99, sum( rate( skipper_serve_route_duration_seconds_bucket{ route=~"{{ printf "kube(ew)?_%s__%s_canary__.*__%s_canary(_[0-9]+)?" namespace ingress service }}", le="+Inf" }[1m] ) ) by (le) ) ``` Edit the canary analysis and add the latency check: ```yaml analysis: metrics: - name: "latency" templateRef: name: latency thresholdRange: max: 0.5 interval: 1m ``` The threshold is set to 500ms so if the average request duration in the last minute goes over half a second then the analysis will fail and the canary will not be promoted. Trigger a canary deployment by updating the container image: ```bash kubectl -n test set image deployment/podinfo \ podinfod=stefanprodan/podinfo:4.0.6 ``` Generate high response latency: ```bash watch curl http://app.example.com/delay/2 ``` Watch Flagger logs: ```text kubectl -n flagger-system logs deployment/flagger -f | jq .msg Starting canary deployment for podinfo.test Advance podinfo.test canary weight 5 Advance podinfo.test canary weight 10 Advance podinfo.test canary weight 15 Halt podinfo.test advancement latency 1.20 > 0.5 Halt podinfo.test advancement latency 1.45 > 0.5 Halt podinfo.test advancement latency 1.60 > 0.5 Halt podinfo.test advancement latency 1.69 > 0.5 Halt podinfo.test advancement latency 1.70 > 0.5 Rolling back podinfo.test failed checks threshold reached 5 Canary failed! Scaling down podinfo.test ``` If you have alerting configured, Flagger will send a notification with the reason why the canary failed.