# App Mesh Canary Deployments This guide shows you how to use App Mesh and Flagger to automate canary deployments. You'll need an EKS cluster configured with App Mesh, you can find the install guide [here](https://docs.flagger.app/install/flagger-install-on-eks-appmesh). ## Bootstrap Flagger takes a Kubernetes deployment and optionally a horizontal pod autoscaler \(HPA\), then creates a series of objects \(Kubernetes deployments, ClusterIP services, App Mesh virtual nodes and services\). These objects expose the application on the mesh and drive the canary analysis and promotion. The only App Mesh object you need to create by yourself is the mesh resource. Create a mesh called `global`: ```bash cat << EOF | kubectl apply -f - apiVersion: appmesh.k8s.aws/v1beta1 kind: Mesh metadata: name: global spec: serviceDiscoveryType: dns EOF ``` Create a test namespace with App Mesh sidecar injection enabled: ```bash cat << EOF | kubectl apply -f - apiVersion: v1 kind: Namespace metadata: name: test labels: appmesh.k8s.aws/sidecarInjectorWebhook: enabled EOF ``` Create a deployment and a horizontal pod autoscaler: ```bash kubectl apply -k github.com/weaveworks/flagger//kustomize/podinfo ``` Deploy the load testing service to generate traffic during the canary analysis: ```bash helm upgrade -i flagger-loadtester flagger/loadtester \ --namespace=test \ --set meshName=global \ --set "backends[0]=podinfo.test" \ --set "backends[1]=podinfo-canary.test" ``` Create a canary custom resource: ```yaml apiVersion: flagger.app/v1alpha3 kind: Canary metadata: name: podinfo namespace: test spec: # deployment reference targetRef: apiVersion: apps/v1 kind: Deployment name: podinfo # the maximum time in seconds for the canary deployment # to make progress before it is rollback (default 600s) progressDeadlineSeconds: 60 # HPA reference (optional) autoscalerRef: apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler name: podinfo service: # container port port: 9898 # container port name (optional) # can be http or grpc portName: http # App Mesh reference meshName: global # App Mesh ingress (optional) hosts: - "*" # App Mesh ingress timeout (optional) timeout: 5s # App Mesh egress (optional) backends: - backend.test # App Mesh retry policy (optional) retries: attempts: 3 perTryTimeout: 5s retryOn: "gateway-error,client-error,stream-error" # define the canary analysis timing and KPIs canaryAnalysis: # schedule interval (default 60s) interval: 1m # max number of failed metric checks before rollback threshold: 5 # max traffic percentage routed to canary # percentage (0-100) maxWeight: 50 # canary increment step # percentage (0-100) stepWeight: 5 # App Mesh Prometheus checks metrics: - name: request-success-rate # minimum req success rate (non 5xx responses) # percentage (0-100) threshold: 99 interval: 1m - name: request-duration # maximum req duration P99 # milliseconds threshold: 500 interval: 30s # testing (optional) webhooks: - name: acceptance-test type: pre-rollout url: http://flagger-loadtester.test/ timeout: 30s metadata: type: bash cmd: "curl -sd 'test' http://podinfo-canary.test:9898/token | grep token" - name: load-test url: http://flagger-loadtester.test/ timeout: 5s metadata: cmd: "hey -z 1m -q 10 -c 2 http://podinfo-canary.test:9898/" ``` Save the above resource as podinfo-canary.yaml and then apply it: ```bash kubectl apply -f ./podinfo-canary.yaml ``` After a couple of seconds Flagger will create the canary objects: ```bash # applied deployment.apps/podinfo horizontalpodautoscaler.autoscaling/podinfo canary.flagger.app/podinfo # generated Kubernetes objects deployment.apps/podinfo-primary horizontalpodautoscaler.autoscaling/podinfo-primary service/podinfo service/podinfo-canary service/podinfo-primary # generated App Mesh objects virtualnode.appmesh.k8s.aws/podinfo virtualnode.appmesh.k8s.aws/podinfo-canary virtualnode.appmesh.k8s.aws/podinfo-primary virtualservice.appmesh.k8s.aws/podinfo.test virtualservice.appmesh.k8s.aws/podinfo-canary.test ``` After the boostrap, the podinfo deployment will be scaled to zero and the traffic to `podinfo.test` will be routed to the primary pods. During the canary analysis, the `podinfo-canary.test` address can be used to target directly the canary pods. The App Mesh specific settings are: ```yaml service: port: 9898 meshName: global backends: - backend1.test - backend2.test ``` App Mesh blocks all egress traffic by default. If your application needs to call another service, you have to create an App Mesh virtual service for it and add the virtual service name to the backend list. ## Setup App Mesh Gateway \(optional\) In order to expose the podinfo app outside the mesh you'll be using an Envoy-powered ingress gateway and an AWS network load balancer. The gateway binds to an internet domain and forwards the calls into the mesh through the App Mesh sidecar. If podinfo becomes unavailable due to a cluster downscaling or a node restart, the gateway will retry the calls for a short period of time. Deploy the gateway behind an AWS NLB: ```bash helm upgrade -i appmesh-gateway flagger/appmesh-gateway \ --namespace test \ --set mesh.name=global ``` Find the gateway public address: ```bash export URL="http://$(kubectl -n test get svc/appmesh-gateway -ojson | jq -r ".status.loadBalancer.ingress[].hostname")" echo $URL ``` Wait for the NLB to become active: ```bash watch curl -sS $URL ``` Open your browser and navigate to the ingress address to access podinfo UI. ## Automated canary promotion A canary deployment is triggered by changes in any of the following objects: * Deployment PodSpec \(container image, command, ports, env, resources, etc\) * ConfigMaps and Secrets mounted as volumes or mapped to environment variables Trigger a canary deployment by updating the container image: ```bash kubectl -n test set image deployment/podinfo \ podinfod=stefanprodan/podinfo:3.1.1 ``` Flagger detects that the deployment revision changed and starts a new rollout: ```text kubectl -n test describe canary/podinfo Status: Canary Weight: 0 Failed Checks: 0 Phase: Succeeded Events: New revision detected! Scaling up podinfo.test Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available Pre-rollout check acceptance-test passed Advance podinfo.test canary weight 5 Advance podinfo.test canary weight 10 Advance podinfo.test canary weight 15 Advance podinfo.test canary weight 20 Advance podinfo.test canary weight 25 Advance podinfo.test canary weight 30 Advance podinfo.test canary weight 35 Advance podinfo.test canary weight 40 Advance podinfo.test canary weight 45 Advance podinfo.test canary weight 50 Copying podinfo.test template spec to podinfo-primary.test Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available Routing all traffic to primary Promotion completed! Scaling down podinfo.test ``` When the canary analysis starts, Flagger will call the pre-rollout webhooks before routing traffic to the canary. **Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis. During the analysis the canary’s progress can be monitored with Grafana. The App Mesh dashboard URL is [http://localhost:3000/d/flagger-appmesh/appmesh-canary?refresh=10s&orgId=1&var-namespace=test&var-primary=podinfo-primary&var-canary=podinfo](http://localhost:3000/d/flagger-appmesh/appmesh-canary?refresh=10s&orgId=1&var-namespace=test&var-primary=podinfo-primary&var-canary=podinfo) ![App Mesh Canary Dashboard](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/screens/flagger-grafana-appmesh.png) You can monitor all canaries with: ```bash watch kubectl get canaries --all-namespaces NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME test podinfo Progressing 15 2019-10-02T14:05:07Z prod frontend Succeeded 0 2019-10-02T16:15:07Z prod backend Failed 0 2019-10-02T17:05:07Z ``` If you’ve enabled the Slack notifications, you should receive the following messages: ![Flagger Slack Notifications](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/screens/slack-canary-notifications.png) ## Automated rollback During the canary analysis you can generate HTTP 500 errors or high latency to test if Flagger pauses the rollout. Trigger a canary deployment: ```bash kubectl -n test set image deployment/podinfo \ podinfod=stefanprodan/podinfo:3.1.2 ``` Exec into the load tester pod with: ```bash kubectl -n test exec -it deploy/flagger-loadtester bash ``` Generate HTTP 500 errors: ```bash hey -z 1m -c 5 -q 5 http://podinfo-canary.test:9898/status/500 ``` Generate latency: ```bash watch -n 1 curl http://podinfo-canary.test:9898/delay/1 ``` When the number of failed checks reaches the canary analysis threshold, the traffic is routed back to the primary, the canary is scaled to zero and the rollout is marked as failed. ```text kubectl -n appmesh-system logs deploy/flagger -f | jq .msg New revision detected! Starting canary analysis for podinfo.test Pre-rollout check acceptance-test passed Advance podinfo.test canary weight 5 Advance podinfo.test canary weight 10 Advance podinfo.test canary weight 15 Halt podinfo.test advancement success rate 69.17% < 99% Halt podinfo.test advancement success rate 61.39% < 99% Halt podinfo.test advancement success rate 55.06% < 99% Halt podinfo.test advancement request duration 1.20s > 0.5s Halt podinfo.test advancement request duration 1.45s > 0.5s Rolling back podinfo.test failed checks threshold reached 5 Canary failed! Scaling down podinfo.test ``` If you’ve enabled the Slack notifications, you’ll receive a message if the progress deadline is exceeded, or if the analysis reached the maximum number of failed checks: ![Flagger Slack Notifications](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/screens/slack-canary-failed.png) ## A/B Testing Besides weighted routing, Flagger can be configured to route traffic to the canary based on HTTP match conditions. In an A/B testing scenario, you'll be using HTTP headers or cookies to target a certain segment of your users. This is particularly useful for frontend applications that require session affinity. ![Flagger A/B Testing Stages](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/diagrams/flagger-abtest-steps.png) Edit the canary analysis, remove the max/step weight and add the match conditions and iterations: ```yaml canaryAnalysis: interval: 1m threshold: 5 iterations: 10 match: - headers: x-canary: exact: "insider" webhooks: - name: load-test url: http://flagger-loadtester.test/ metadata: cmd: "hey -z 1m -q 10 -c 2 -H 'X-Canary: insider' http://podinfo.test:9898/" ``` The above configuration will run an analysis for ten minutes targeting users that have a `X-Canary: insider` header. You can also use a HTTP cookie, to target all users with a `canary` cookie set to `insider` the match condition should be: ```yaml match: - headers: cookie: regex: "^(.*?;)?(canary=insider)(;.*)?$" webhooks: - name: load-test url: http://flagger-loadtester.test/ metadata: cmd: "hey -z 1m -q 10 -c 2 -H 'Cookie: canary=insider' http://podinfo.test:9898/" ``` Trigger a canary deployment by updating the container image: ```bash kubectl -n test set image deployment/podinfo \ podinfod=stefanprodan/podinfo:3.1.3 ``` Flagger detects that the deployment revision changed and starts the A/B test: ```text kubectl -n appmesh-system logs deploy/flagger -f | jq .msg New revision detected! Starting canary analysis for podinfo.test Advance podinfo.test canary iteration 1/10 Advance podinfo.test canary iteration 2/10 Advance podinfo.test canary iteration 3/10 Advance podinfo.test canary iteration 4/10 Advance podinfo.test canary iteration 5/10 Advance podinfo.test canary iteration 6/10 Advance podinfo.test canary iteration 7/10 Advance podinfo.test canary iteration 8/10 Advance podinfo.test canary iteration 9/10 Advance podinfo.test canary iteration 10/10 Copying podinfo.test template spec to podinfo-primary.test Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available Routing all traffic to primary Promotion completed! Scaling down podinfo.test ```