Export changes to OSS. (#1962)

This commit is contained in:
mmukhi 2018-04-05 10:45:41 -07:00 committed by GitHub
parent 291de7f0ab
commit d0a21a3347
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 1982 additions and 1864 deletions

View File

@ -1241,7 +1241,20 @@ func (ac *addrConn) transportMonitor() {
// Block until we receive a goaway or an error occurs.
select {
case <-t.GoAway():
done := t.Error()
cleanup := t.Close
// Since this transport will be orphaned (won't have a transportMonitor)
// we need to launch a goroutine to keep track of clientConn.Close()
// happening since it might not be noticed by any other goroutine for a while.
go func() {
<-done
cleanup()
}()
case <-t.Error():
// In case this is triggered because clientConn.Close()
// was called, we want to immeditately close the transport
// since no other goroutine might notice it for a while.
t.Close()
case <-cdeadline:
ac.mu.Lock()
// This implies that client received server preface.

View File

@ -748,7 +748,6 @@ type lazyConn struct {
func (l *lazyConn) Write(b []byte) (int, error) {
if atomic.LoadInt32(&(l.beLazy)) == 1 {
// The sleep duration here needs to less than the leakCheck deadline.
time.Sleep(time.Second)
}
return l.Conn.Write(b)
@ -963,7 +962,7 @@ func testServerGoAwayPendingRPC(t *testing.T, e env) {
}
// The existing RPC should be still good to proceed.
if err := stream.Send(req); err != nil {
t.Fatalf("%v.Send(%v) = %v, want <nil>", stream, req, err)
t.Fatalf("%v.Send(_) = %v, want <nil>", stream, err)
}
if _, err := stream.Recv(); err != nil {
t.Fatalf("%v.Recv() = _, %v, want _, <nil>", stream, err)
@ -3053,7 +3052,6 @@ func testMultipleSetHeaderStreamingRPCError(t *testing.T, e env) {
if !reflect.DeepEqual(header, expectedHeader) {
t.Fatalf("Received header metadata %v, want %v", header, expectedHeader)
}
if err := stream.CloseSend(); err != nil {
t.Fatalf("%v.CloseSend() got %v, want %v", stream, err, nil)
}
@ -3156,44 +3154,6 @@ func testRetry(t *testing.T, e env) {
}
}
func TestRPCTimeout(t *testing.T) {
defer leakcheck.Check(t)
for _, e := range listTestEnv() {
testRPCTimeout(t, e)
}
}
// TODO(zhaoq): Have a better test coverage of timeout and cancellation mechanism.
func testRPCTimeout(t *testing.T, e env) {
te := newTest(t, e)
te.startServer(&testServer{security: e.security, unaryCallSleepTime: 50 * time.Millisecond})
defer te.tearDown()
cc := te.clientConn()
tc := testpb.NewTestServiceClient(cc)
const argSize = 2718
const respSize = 314
payload, err := newPayload(testpb.PayloadType_COMPRESSABLE, argSize)
if err != nil {
t.Fatal(err)
}
req := &testpb.SimpleRequest{
ResponseType: testpb.PayloadType_COMPRESSABLE,
ResponseSize: respSize,
Payload: payload,
}
for i := -1; i <= 10; i++ {
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(i)*time.Millisecond)
if _, err := tc.UnaryCall(ctx, req); status.Code(err) != codes.DeadlineExceeded {
t.Fatalf("TestService/UnaryCallv(_, _) = _, %v; want <nil>, error code: %s", err, codes.DeadlineExceeded)
}
cancel()
}
}
func TestCancel(t *testing.T) {
defer leakcheck.Check(t)
for _, e := range listTestEnv() {
@ -3687,7 +3647,7 @@ func testClientStreaming(t *testing.T, e env, sizes []int) {
Payload: payload,
}
if err := stream.Send(req); err != nil {
t.Fatalf("%v.Send(%v) = %v, want <nil>", stream, req, err)
t.Fatalf("%v.Send(_) = %v, want <nil>", stream, err)
}
sum += s
}
@ -5078,7 +5038,7 @@ func TestTapTimeout(t *testing.T) {
ss := &stubServer{
emptyCall: func(ctx context.Context, in *testpb.Empty) (*testpb.Empty, error) {
<-ctx.Done()
return &testpb.Empty{}, nil
return nil, status.Errorf(codes.Canceled, ctx.Err().Error())
},
}
if err := ss.Start(sopts); err != nil {
@ -6218,3 +6178,40 @@ func TestFailFastRPCErrorOnBadCertificates(t *testing.T) {
}
te.t.Fatalf("TestService/EmptyCall(_, _) = _, %v, want err.Error() contains %q", err, clientAlwaysFailCredErrorMsg)
}
func TestRPCTimeout(t *testing.T) {
defer leakcheck.Check(t)
for _, e := range listTestEnv() {
testRPCTimeout(t, e)
}
}
func testRPCTimeout(t *testing.T, e env) {
te := newTest(t, e)
te.startServer(&testServer{security: e.security, unaryCallSleepTime: 500 * time.Millisecond})
defer te.tearDown()
cc := te.clientConn()
tc := testpb.NewTestServiceClient(cc)
const argSize = 2718
const respSize = 314
payload, err := newPayload(testpb.PayloadType_COMPRESSABLE, argSize)
if err != nil {
t.Fatal(err)
}
req := &testpb.SimpleRequest{
ResponseType: testpb.PayloadType_COMPRESSABLE,
ResponseSize: respSize,
Payload: payload,
}
for i := -1; i <= 10; i++ {
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(i)*time.Millisecond)
if _, err := tc.UnaryCall(ctx, req); status.Code(err) != codes.DeadlineExceeded {
t.Fatalf("TestService/UnaryCallv(_, _) = _, %v; want <nil>, error code: %s", err, codes.DeadlineExceeded)
}
cancel()
}
}

758
transport/controlbuf.go Normal file
View File

@ -0,0 +1,758 @@
/*
*
* Copyright 2014 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package transport
import (
"bytes"
"fmt"
"runtime"
"sync"
"golang.org/x/net/http2"
"golang.org/x/net/http2/hpack"
)
type itemNode struct {
it interface{}
next *itemNode
}
type itemList struct {
head *itemNode
tail *itemNode
}
func (il *itemList) enqueue(i interface{}) {
n := &itemNode{it: i}
if il.tail == nil {
il.head, il.tail = n, n
return
}
il.tail.next = n
il.tail = n
}
// peek returns the first item in the list without removing it from the
// list.
func (il *itemList) peek() interface{} {
return il.head.it
}
func (il *itemList) dequeue() interface{} {
if il.head == nil {
return nil
}
i := il.head.it
il.head = il.head.next
if il.head == nil {
il.tail = nil
}
return i
}
func (il *itemList) dequeueAll() *itemNode {
h := il.head
il.head, il.tail = nil, nil
return h
}
func (il *itemList) isEmpty() bool {
return il.head == nil
}
// The following defines various control items which could flow through
// the control buffer of transport. They represent different aspects of
// control tasks, e.g., flow control, settings, streaming resetting, etc.
type headerFrame struct {
streamID uint32
hf []hpack.HeaderField
endStream bool // Valid on server side.
initStream func(uint32) (bool, error) // Used only on the client side.
onWrite func()
wq *writeQuota // write quota for the stream created.
cleanup *cleanupStream // Valid on the server side.
onOrphaned func(error) // Valid on client-side
}
type cleanupStream struct {
streamID uint32
idPtr *uint32
rst bool
rstCode http2.ErrCode
onWrite func()
}
type dataFrame struct {
streamID uint32
endStream bool
h []byte
d []byte
// onEachWrite is called every time
// a part of d is written out.
onEachWrite func()
}
type incomingWindowUpdate struct {
streamID uint32
increment uint32
}
type outgoingWindowUpdate struct {
streamID uint32
increment uint32
}
type incomingSettings struct {
ss []http2.Setting
}
type outgoingSettings struct {
ss []http2.Setting
}
type settingsAck struct {
}
type incomingGoAway struct {
}
type goAway struct {
code http2.ErrCode
debugData []byte
headsUp bool
closeConn bool
}
type ping struct {
ack bool
data [8]byte
}
type outStreamState int
const (
active outStreamState = iota
empty
waitingOnStreamQuota
)
type outStream struct {
id uint32
state outStreamState
itl *itemList
bytesOutStanding int
wq *writeQuota
next *outStream
prev *outStream
}
func (s *outStream) deleteSelf() {
if s.prev != nil {
s.prev.next = s.next
}
if s.next != nil {
s.next.prev = s.prev
}
s.next, s.prev = nil, nil
}
type outStreamList struct {
// Following are sentinal objects that mark the
// beginning and end of the list. They do not
// contain any item lists. All valid objects are
// inserted in between them.
// This is needed so that an outStream object can
// deleteSelf() in O(1) time without knowing which
// list it belongs to.
head *outStream
tail *outStream
}
func newOutStreamList() *outStreamList {
head, tail := new(outStream), new(outStream)
head.next = tail
tail.prev = head
return &outStreamList{
head: head,
tail: tail,
}
}
func (l *outStreamList) enqueue(s *outStream) {
e := l.tail.prev
e.next = s
s.prev = e
s.next = l.tail
l.tail.prev = s
}
// remove from the beginning of the list.
func (l *outStreamList) dequeue() *outStream {
b := l.head.next
if b == l.tail {
return nil
}
b.deleteSelf()
return b
}
type controlBuffer struct {
ch chan struct{}
done <-chan struct{}
mu sync.Mutex
consumerWaiting bool
list *itemList
err error
}
func newControlBuffer(done <-chan struct{}) *controlBuffer {
return &controlBuffer{
ch: make(chan struct{}, 1),
list: &itemList{},
done: done,
}
}
func (c *controlBuffer) put(it interface{}) error {
_, err := c.executeAndPut(nil, it)
return err
}
func (c *controlBuffer) executeAndPut(f func(it interface{}) bool, it interface{}) (bool, error) {
var wakeUp bool
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return false, c.err
}
if f != nil {
if !f(it) { // f wasn't successful
c.mu.Unlock()
return false, nil
}
}
if c.consumerWaiting {
wakeUp = true
c.consumerWaiting = false
}
c.list.enqueue(it)
c.mu.Unlock()
if wakeUp {
select {
case c.ch <- struct{}{}:
default:
}
}
return true, nil
}
func (c *controlBuffer) get(block bool) (interface{}, error) {
for {
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return nil, c.err
}
if !c.list.isEmpty() {
h := c.list.dequeue()
c.mu.Unlock()
return h, nil
}
if !block {
c.mu.Unlock()
return nil, nil
}
c.consumerWaiting = true
c.mu.Unlock()
select {
case <-c.ch:
case <-c.done:
c.finish()
return nil, ErrConnClosing
}
}
}
func (c *controlBuffer) finish() {
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return
}
c.err = ErrConnClosing
// There may be headers for streams in the control buffer.
// These streams need to be cleaned out since the transport
// is still not aware of these yet.
for head := c.list.dequeueAll(); head != nil; head = head.next {
hdr, ok := head.it.(*headerFrame)
if !ok {
continue
}
if hdr.onOrphaned != nil { // It will be nil on the server-side.
hdr.onOrphaned(ErrConnClosing)
}
}
c.mu.Unlock()
}
type side int
const (
clientSide side = iota
serverSide
)
type loopyWriter struct {
side side
cbuf *controlBuffer
sendQuota uint32
oiws uint32 // outbound initial window size.
estdStreams map[uint32]*outStream // Established streams.
activeStreams *outStreamList // Streams that are sending data.
framer *framer
hBuf *bytes.Buffer // The buffer for HPACK encoding.
hEnc *hpack.Encoder // HPACK encoder.
bdpEst *bdpEstimator
draining bool
// Side-specific handlers
ssGoAwayHandler func(*goAway) (bool, error)
}
func newLoopyWriter(s side, fr *framer, cbuf *controlBuffer, bdpEst *bdpEstimator) *loopyWriter {
var buf bytes.Buffer
l := &loopyWriter{
side: s,
cbuf: cbuf,
sendQuota: defaultWindowSize,
oiws: defaultWindowSize,
estdStreams: make(map[uint32]*outStream),
activeStreams: newOutStreamList(),
framer: fr,
hBuf: &buf,
hEnc: hpack.NewEncoder(&buf),
bdpEst: bdpEst,
}
return l
}
const minBatchSize = 1000
// run should be run in a separate goroutine.
func (l *loopyWriter) run() {
var (
it interface{}
err error
isEmpty bool
)
defer func() {
errorf("transport: loopyWriter.run returning. Err: %v", err)
}()
for {
it, err = l.cbuf.get(true)
if err != nil {
return
}
if err = l.handle(it); err != nil {
return
}
if _, err = l.processData(); err != nil {
return
}
gosched := true
hasdata:
for {
it, err = l.cbuf.get(false)
if err != nil {
return
}
if it != nil {
if err = l.handle(it); err != nil {
return
}
if _, err = l.processData(); err != nil {
return
}
continue hasdata
}
if isEmpty, err = l.processData(); err != nil {
return
}
if !isEmpty {
continue hasdata
}
if gosched {
gosched = false
if l.framer.writer.offset < minBatchSize {
runtime.Gosched()
continue hasdata
}
}
l.framer.writer.Flush()
break hasdata
}
}
}
func (l *loopyWriter) outgoingWindowUpdateHandler(w *outgoingWindowUpdate) error {
return l.framer.fr.WriteWindowUpdate(w.streamID, w.increment)
}
func (l *loopyWriter) incomingWindowUpdateHandler(w *incomingWindowUpdate) error {
// Otherwise update the quota.
if w.streamID == 0 {
l.sendQuota += w.increment
return nil
}
// Find the stream and update it.
if str, ok := l.estdStreams[w.streamID]; ok {
str.bytesOutStanding -= int(w.increment)
if strQuota := int(l.oiws) - str.bytesOutStanding; strQuota > 0 && str.state == waitingOnStreamQuota {
str.state = active
l.activeStreams.enqueue(str)
return nil
}
}
return nil
}
func (l *loopyWriter) outgoingSettingsHandler(s *outgoingSettings) error {
return l.framer.fr.WriteSettings(s.ss...)
}
func (l *loopyWriter) incomingSettingsHandler(s *incomingSettings) error {
if err := l.applySettings(s.ss); err != nil {
return err
}
return l.framer.fr.WriteSettingsAck()
}
func (l *loopyWriter) headerHandler(h *headerFrame) error {
if l.side == serverSide {
if h.endStream { // Case 1.A: Server wants to close stream.
// Make sure it's not a trailers only response.
if str, ok := l.estdStreams[h.streamID]; ok {
if str.state != empty { // either active or waiting on stream quota.
// add it str's list of items.
str.itl.enqueue(h)
return nil
}
}
if err := l.writeHeader(h.streamID, h.endStream, h.hf, h.onWrite); err != nil {
return err
}
return l.cleanupStreamHandler(h.cleanup)
}
// Case 1.B: Server is responding back with headers.
str := &outStream{
state: empty,
itl: &itemList{},
wq: h.wq,
}
l.estdStreams[h.streamID] = str
return l.writeHeader(h.streamID, h.endStream, h.hf, h.onWrite)
}
// Case 2: Client wants to originate stream.
str := &outStream{
id: h.streamID,
state: empty,
itl: &itemList{},
wq: h.wq,
}
str.itl.enqueue(h)
return l.originateStream(str)
}
func (l *loopyWriter) originateStream(str *outStream) error {
hdr := str.itl.dequeue().(*headerFrame)
sendPing, err := hdr.initStream(str.id)
if err != nil {
if err == ErrConnClosing {
return err
}
// Other errors(errStreamDrain) need not close transport.
return nil
}
if err = l.writeHeader(str.id, hdr.endStream, hdr.hf, hdr.onWrite); err != nil {
return err
}
l.estdStreams[str.id] = str
if sendPing {
return l.pingHandler(&ping{data: [8]byte{}})
}
return nil
}
func (l *loopyWriter) writeHeader(streamID uint32, endStream bool, hf []hpack.HeaderField, onWrite func()) error {
if onWrite != nil {
onWrite()
}
l.hBuf.Reset()
for _, f := range hf {
if err := l.hEnc.WriteField(f); err != nil {
warningf("transport: loopyWriter.writeHeader encountered error while encoding headers:", err)
}
}
var (
err error
endHeaders, first bool
)
first = true
for !endHeaders {
size := l.hBuf.Len()
if size > http2MaxFrameLen {
size = http2MaxFrameLen
} else {
endHeaders = true
}
if first {
first = false
err = l.framer.fr.WriteHeaders(http2.HeadersFrameParam{
StreamID: streamID,
BlockFragment: l.hBuf.Next(size),
EndStream: endStream,
EndHeaders: endHeaders,
})
} else {
err = l.framer.fr.WriteContinuation(
streamID,
endHeaders,
l.hBuf.Next(size),
)
}
if err != nil {
return err
}
}
return nil
}
func (l *loopyWriter) preprocessData(df *dataFrame) error {
str, ok := l.estdStreams[df.streamID]
if !ok {
return nil
}
// If we got data for a stream it means that
// stream was originated and the headers were sent out.
str.itl.enqueue(df)
if str.state == empty {
str.state = active
l.activeStreams.enqueue(str)
}
return nil
}
func (l *loopyWriter) pingHandler(p *ping) error {
if !p.ack {
l.bdpEst.timesnap(p.data)
}
return l.framer.fr.WritePing(p.ack, p.data)
}
func (l *loopyWriter) cleanupStreamHandler(c *cleanupStream) error {
c.onWrite()
if str, ok := l.estdStreams[c.streamID]; ok {
// On the server side it could be a trailers-only response or
// a RST_STREAM before stream initialization thus the stream might
// not be established yet.
delete(l.estdStreams, c.streamID)
str.deleteSelf()
}
if c.rst { // If RST_STREAM needs to be sent.
if err := l.framer.fr.WriteRSTStream(c.streamID, c.rstCode); err != nil {
return err
}
}
if l.side == clientSide && l.draining && len(l.estdStreams) == 0 {
return ErrConnClosing
}
return nil
}
func (l *loopyWriter) incomingGoAwayHandler(*incomingGoAway) error {
if l.side == clientSide {
l.draining = true
if len(l.estdStreams) == 0 {
return ErrConnClosing
}
}
return nil
}
func (l *loopyWriter) goAwayHandler(g *goAway) error {
// Handling of outgoing GoAway is very specific to side.
if l.ssGoAwayHandler != nil {
draining, err := l.ssGoAwayHandler(g)
if err != nil {
return err
}
l.draining = draining
}
return nil
}
func (l *loopyWriter) handle(i interface{}) error {
switch i := i.(type) {
case *incomingWindowUpdate:
return l.incomingWindowUpdateHandler(i)
case *outgoingWindowUpdate:
return l.outgoingWindowUpdateHandler(i)
case *incomingSettings:
return l.incomingSettingsHandler(i)
case *outgoingSettings:
return l.outgoingSettingsHandler(i)
case *headerFrame:
return l.headerHandler(i)
case *cleanupStream:
return l.cleanupStreamHandler(i)
case *incomingGoAway:
return l.incomingGoAwayHandler(i)
case *dataFrame:
return l.preprocessData(i)
case *ping:
return l.pingHandler(i)
case *goAway:
return l.goAwayHandler(i)
default:
return fmt.Errorf("transport: unknown control message type %T", i)
}
}
func (l *loopyWriter) applySettings(ss []http2.Setting) error {
for _, s := range ss {
switch s.ID {
case http2.SettingInitialWindowSize:
o := l.oiws
l.oiws = s.Val
if o < l.oiws {
// If the new limit is greater make all depleted streams active.
for _, stream := range l.estdStreams {
if stream.state == waitingOnStreamQuota {
stream.state = active
l.activeStreams.enqueue(stream)
}
}
}
}
}
return nil
}
func (l *loopyWriter) processData() (bool, error) {
if l.sendQuota == 0 {
return true, nil
}
str := l.activeStreams.dequeue()
if str == nil {
return true, nil
}
dataItem := str.itl.peek().(*dataFrame)
if len(dataItem.h) == 0 && len(dataItem.d) == 0 {
// Client sends out empty data frame with endStream = true
if err := l.framer.fr.WriteData(dataItem.streamID, dataItem.endStream, nil); err != nil {
return false, err
}
str.itl.dequeue()
if str.itl.isEmpty() {
str.state = empty
} else if trailer, ok := str.itl.peek().(*headerFrame); ok { // the next item is trailers.
if err := l.writeHeader(trailer.streamID, trailer.endStream, trailer.hf, trailer.onWrite); err != nil {
return false, err
}
if err := l.cleanupStreamHandler(trailer.cleanup); err != nil {
return false, nil
}
} else {
l.activeStreams.enqueue(str)
}
return false, nil
}
var (
idx int
buf []byte
)
if len(dataItem.h) != 0 { // data header has not been written out yet.
buf = dataItem.h
} else {
idx = 1
buf = dataItem.d
}
size := http2MaxFrameLen
if len(buf) < size {
size = len(buf)
}
if strQuota := int(l.oiws) - str.bytesOutStanding; strQuota <= 0 {
str.state = waitingOnStreamQuota
return false, nil
} else if strQuota < size {
size = strQuota
}
if l.sendQuota < uint32(size) {
size = int(l.sendQuota)
}
// Now that outgoing flow controls are checked we can replenish str's write quota
str.wq.replenish(size)
var endStream bool
// This last data message on this stream and all
// of it can be written in this go.
if dataItem.endStream && size == len(buf) {
// buf contains either data or it contains header but data is empty.
if idx == 1 || len(dataItem.d) == 0 {
endStream = true
}
}
if dataItem.onEachWrite != nil {
dataItem.onEachWrite()
}
if err := l.framer.fr.WriteData(dataItem.streamID, endStream, buf[:size]); err != nil {
return false, err
}
buf = buf[size:]
str.bytesOutStanding += size
l.sendQuota -= uint32(size)
if idx == 0 {
dataItem.h = buf
} else {
dataItem.d = buf
}
if len(dataItem.h) == 0 && len(dataItem.d) == 0 { // All the data from that message was written out.
str.itl.dequeue()
}
if str.itl.isEmpty() {
str.state = empty
} else if trailer, ok := str.itl.peek().(*headerFrame); ok { // The next item is trailers.
if err := l.writeHeader(trailer.streamID, trailer.endStream, trailer.hf, trailer.onWrite); err != nil {
return false, err
}
if err := l.cleanupStreamHandler(trailer.cleanup); err != nil {
return false, err
}
} else if int(l.oiws)-str.bytesOutStanding <= 0 { // Ran out of stream quota.
str.state = waitingOnStreamQuota
} else { // Otherwise add it back to the list of active streams.
l.activeStreams.enqueue(str)
}
return false, nil
}

View File

@ -20,13 +20,10 @@ package transport
import (
"fmt"
"io"
"math"
"sync"
"sync/atomic"
"time"
"golang.org/x/net/http2"
"golang.org/x/net/http2/hpack"
)
const (
@ -46,192 +43,86 @@ const (
defaultKeepalivePolicyMinTime = time.Duration(5 * time.Minute)
// max window limit set by HTTP2 Specs.
maxWindowSize = math.MaxInt32
// defaultLocalSendQuota sets is default value for number of data
// defaultWriteQuota is the default value for number of data
// bytes that each stream can schedule before some of it being
// flushed out.
defaultLocalSendQuota = 128 * 1024
defaultWriteQuota = 64 * 1024
)
// The following defines various control items which could flow through
// the control buffer of transport. They represent different aspects of
// control tasks, e.g., flow control, settings, streaming resetting, etc.
type headerFrame struct {
streamID uint32
hf []hpack.HeaderField
endStream bool
// writeQuota is a soft limit on the amount of data a stream can
// schedule before some of it is written out.
type writeQuota struct {
quota int32
// get waits on read from when quota goes less than or equal to zero.
// replenish writes on it when quota goes positive again.
ch chan struct{}
// done is triggered in error case.
done <-chan struct{}
}
func (*headerFrame) item() {}
type continuationFrame struct {
streamID uint32
endHeaders bool
headerBlockFragment []byte
}
type dataFrame struct {
streamID uint32
endStream bool
d []byte
f func()
}
func (*dataFrame) item() {}
func (*continuationFrame) item() {}
type windowUpdate struct {
streamID uint32
increment uint32
}
func (*windowUpdate) item() {}
type settings struct {
ss []http2.Setting
}
func (*settings) item() {}
type settingsAck struct {
}
func (*settingsAck) item() {}
type resetStream struct {
streamID uint32
code http2.ErrCode
}
func (*resetStream) item() {}
type goAway struct {
code http2.ErrCode
debugData []byte
headsUp bool
closeConn bool
}
func (*goAway) item() {}
type flushIO struct {
closeTr bool
}
func (*flushIO) item() {}
type ping struct {
ack bool
data [8]byte
}
func (*ping) item() {}
// quotaPool is a pool which accumulates the quota and sends it to acquire()
// when it is available.
type quotaPool struct {
mu sync.Mutex
c chan struct{}
version uint32
quota int
}
// newQuotaPool creates a quotaPool which has quota q available to consume.
func newQuotaPool(q int) *quotaPool {
qb := &quotaPool{
quota: q,
c: make(chan struct{}, 1),
func newWriteQuota(sz int32, done <-chan struct{}) *writeQuota {
return &writeQuota{
quota: sz,
ch: make(chan struct{}, 1),
done: done,
}
return qb
}
// add cancels the pending quota sent on acquired, incremented by v and sends
// it back on acquire.
func (qb *quotaPool) add(v int) {
qb.mu.Lock()
defer qb.mu.Unlock()
qb.lockedAdd(v)
}
func (qb *quotaPool) lockedAdd(v int) {
var wakeUp bool
if qb.quota <= 0 {
wakeUp = true // Wake up potential waiters.
}
qb.quota += v
if wakeUp && qb.quota > 0 {
func (w *writeQuota) get(sz int32) error {
for {
if atomic.LoadInt32(&w.quota) > 0 {
atomic.AddInt32(&w.quota, -sz)
return nil
}
select {
case qb.c <- struct{}{}:
case <-w.ch:
continue
case <-w.done:
return errStreamDone
}
}
}
func (w *writeQuota) replenish(n int) {
sz := int32(n)
a := atomic.AddInt32(&w.quota, sz)
b := a - sz
if b <= 0 && a > 0 {
select {
case w.ch <- struct{}{}:
default:
}
}
}
func (qb *quotaPool) addAndUpdate(v int) {
qb.mu.Lock()
qb.lockedAdd(v)
qb.version++
qb.mu.Unlock()
type trInFlow struct {
limit uint32
unacked uint32
}
func (qb *quotaPool) get(v int, wc waiters) (int, uint32, error) {
qb.mu.Lock()
if qb.quota > 0 {
if v > qb.quota {
v = qb.quota
}
qb.quota -= v
ver := qb.version
qb.mu.Unlock()
return v, ver, nil
}
qb.mu.Unlock()
for {
select {
case <-wc.ctx.Done():
return 0, 0, ContextErr(wc.ctx.Err())
case <-wc.tctx.Done():
return 0, 0, ErrConnClosing
case <-wc.done:
return 0, 0, io.EOF
case <-wc.goAway:
return 0, 0, errStreamDrain
case <-qb.c:
qb.mu.Lock()
if qb.quota > 0 {
if v > qb.quota {
v = qb.quota
}
qb.quota -= v
ver := qb.version
if qb.quota > 0 {
select {
case qb.c <- struct{}{}:
default:
}
}
qb.mu.Unlock()
return v, ver, nil
}
qb.mu.Unlock()
}
}
func (f *trInFlow) newLimit(n uint32) uint32 {
d := n - f.limit
f.limit = n
return d
}
func (qb *quotaPool) compareAndExecute(version uint32, success, failure func()) bool {
qb.mu.Lock()
if version == qb.version {
success()
qb.mu.Unlock()
return true
func (f *trInFlow) onData(n uint32) uint32 {
f.unacked += n
if f.unacked >= f.limit/4 {
w := f.unacked
f.unacked = 0
return w
}
failure()
qb.mu.Unlock()
return false
return 0
}
func (f *trInFlow) reset() uint32 {
w := f.unacked
f.unacked = 0
return w
}
// TODO(mmukhi): Simplify this code.
// inFlow deals with inbound flow control
type inFlow struct {
mu sync.Mutex
@ -252,9 +143,9 @@ type inFlow struct {
// It assumes that n is always greater than the old limit.
func (f *inFlow) newLimit(n uint32) uint32 {
f.mu.Lock()
defer f.mu.Unlock()
d := n - f.limit
f.limit = n
f.mu.Unlock()
return d
}
@ -263,7 +154,6 @@ func (f *inFlow) maybeAdjust(n uint32) uint32 {
n = uint32(math.MaxInt32)
}
f.mu.Lock()
defer f.mu.Unlock()
// estSenderQuota is the receiver's view of the maximum number of bytes the sender
// can send without a window update.
estSenderQuota := int32(f.limit - (f.pendingData + f.pendingUpdate))
@ -275,7 +165,7 @@ func (f *inFlow) maybeAdjust(n uint32) uint32 {
// for this message. Therefore we must send an update over the limit since there's an active read
// request from the application.
if estUntransmittedData > estSenderQuota {
// Sender's window shouldn't go more than 2^31 - 1 as speecified in the HTTP spec.
// Sender's window shouldn't go more than 2^31 - 1 as specified in the HTTP spec.
if f.limit+n > maxWindowSize {
f.delta = maxWindowSize - f.limit
} else {
@ -284,19 +174,24 @@ func (f *inFlow) maybeAdjust(n uint32) uint32 {
// is padded; We will fallback on the current available window(at least a 1/4th of the limit).
f.delta = n
}
f.mu.Unlock()
return f.delta
}
f.mu.Unlock()
return 0
}
// onData is invoked when some data frame is received. It updates pendingData.
func (f *inFlow) onData(n uint32) error {
f.mu.Lock()
defer f.mu.Unlock()
f.pendingData += n
if f.pendingData+f.pendingUpdate > f.limit+f.delta {
return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", f.pendingData+f.pendingUpdate, f.limit)
limit := f.limit
rcvd := f.pendingData + f.pendingUpdate
f.mu.Unlock()
return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", rcvd, limit)
}
f.mu.Unlock()
return nil
}
@ -304,8 +199,8 @@ func (f *inFlow) onData(n uint32) error {
// to be sent to the peer.
func (f *inFlow) onRead(n uint32) uint32 {
f.mu.Lock()
defer f.mu.Unlock()
if f.pendingData == 0 {
f.mu.Unlock()
return 0
}
f.pendingData -= n
@ -320,15 +215,9 @@ func (f *inFlow) onRead(n uint32) uint32 {
if f.pendingUpdate >= f.limit/4 {
wu := f.pendingUpdate
f.pendingUpdate = 0
f.mu.Unlock()
return wu
}
f.mu.Unlock()
return 0
}
func (f *inFlow) resetPendingUpdate() uint32 {
f.mu.Lock()
defer f.mu.Unlock()
n := f.pendingUpdate
f.pendingUpdate = 0
return n
}

View File

@ -365,7 +365,7 @@ func (ht *serverHandlerTransport) HandleStreams(startStream func(*Stream), trace
ht.stats.HandleRPC(s.ctx, inHeader)
}
s.trReader = &transportReader{
reader: &recvBufferReader{ctx: s.ctx, recv: s.buf},
reader: &recvBufferReader{ctx: s.ctx, ctxDone: s.ctx.Done(), recv: s.buf},
windowHandler: func(int) {},
}

File diff suppressed because it is too large Load Diff

View File

@ -52,28 +52,25 @@ var ErrIllegalHeaderWrite = errors.New("transport: the stream is done or WriteHe
// http2Server implements the ServerTransport interface with HTTP2.
type http2Server struct {
ctx context.Context
ctxDone <-chan struct{} // Cache the context.Done() chan
cancel context.CancelFunc
conn net.Conn
loopy *loopyWriter
readerDone chan struct{} // sync point to enable testing.
writerDone chan struct{} // sync point to enable testing.
remoteAddr net.Addr
localAddr net.Addr
maxStreamID uint32 // max stream ID ever seen
authInfo credentials.AuthInfo // auth info about the connection
inTapHandle tap.ServerInHandle
framer *framer
hBuf *bytes.Buffer // the buffer for HPACK encoding
hEnc *hpack.Encoder // HPACK encoder
// The max number of concurrent streams.
maxStreams uint32
// controlBuf delivers all the control related tasks (e.g., window
// updates, reset streams, and various settings) to the controller.
controlBuf *controlBuffer
fc *inFlow
// sendQuotaPool provides flow control to outbound message.
sendQuotaPool *quotaPool
// localSendQuota limits the amount of data that can be scheduled
// for writing before it is actually written out.
localSendQuota *quotaPool
stats stats.Handler
fc *trInFlow
stats stats.Handler
// Flag to keep track of reading activity on transport.
// 1 is true and 0 is false.
activity uint32 // Accessed atomically.
@ -104,8 +101,6 @@ type http2Server struct {
drainChan chan struct{}
state transportState
activeStreams map[uint32]*Stream
// the per-stream outbound flow control window size set by the peer.
streamSendQuota uint32
// idle is the time instant when the connection went idle.
// This is either the beginning of the connection or when the number of
// RPCs go down to 0.
@ -185,33 +180,30 @@ func newHTTP2Server(conn net.Conn, config *ServerConfig) (_ ServerTransport, err
if kep.MinTime == 0 {
kep.MinTime = defaultKeepalivePolicyMinTime
}
var buf bytes.Buffer
ctx, cancel := context.WithCancel(context.Background())
t := &http2Server{
ctx: ctx,
cancel: cancel,
ctxDone: ctx.Done(),
conn: conn,
remoteAddr: conn.RemoteAddr(),
localAddr: conn.LocalAddr(),
authInfo: config.AuthInfo,
framer: framer,
hBuf: &buf,
hEnc: hpack.NewEncoder(&buf),
readerDone: make(chan struct{}),
writerDone: make(chan struct{}),
maxStreams: maxStreams,
inTapHandle: config.InTapHandle,
controlBuf: newControlBuffer(),
fc: &inFlow{limit: uint32(icwz)},
sendQuotaPool: newQuotaPool(defaultWindowSize),
localSendQuota: newQuotaPool(defaultLocalSendQuota),
fc: &trInFlow{limit: uint32(icwz)},
state: reachable,
activeStreams: make(map[uint32]*Stream),
streamSendQuota: defaultWindowSize,
stats: config.StatsHandler,
kp: kp,
idle: time.Now(),
kep: kep,
initialWindowSize: iwz,
}
t.controlBuf = newControlBuffer(t.ctxDone)
if dynamicWindow {
t.bdpEst = &bdpEstimator{
bdp: initialWindowSize,
@ -258,8 +250,11 @@ func newHTTP2Server(conn net.Conn, config *ServerConfig) (_ ServerTransport, err
t.handleSettings(sf)
go func() {
loopyWriter(t.ctx, t.controlBuf, t.itemHandler)
t.loopy = newLoopyWriter(serverSide, t.framer, t.controlBuf, t.bdpEst)
t.loopy.ssGoAwayHandler = t.outgoingGoAwayHandler
t.loopy.run()
t.conn.Close()
close(t.writerDone)
}()
go t.keepalive()
return t, nil
@ -268,12 +263,16 @@ func newHTTP2Server(conn net.Conn, config *ServerConfig) (_ ServerTransport, err
// operateHeader takes action on the decoded headers.
func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(*Stream), traceCtx func(context.Context, string) context.Context) (close bool) {
streamID := frame.Header().StreamID
var state decodeState
for _, hf := range frame.Fields {
if err := state.processHeaderField(hf); err != nil {
if se, ok := err.(StreamError); ok {
t.controlBuf.put(&resetStream{streamID, statusCodeConvTab[se.Code]})
t.controlBuf.put(&cleanupStream{
streamID: streamID,
rst: true,
rstCode: statusCodeConvTab[se.Code],
onWrite: func() {},
})
}
return
}
@ -325,7 +324,12 @@ func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(
s.ctx, err = t.inTapHandle(s.ctx, info)
if err != nil {
warningf("transport: http2Server.operateHeaders got an error from InTapHandle: %v", err)
t.controlBuf.put(&resetStream{s.id, http2.ErrCodeRefusedStream})
t.controlBuf.put(&cleanupStream{
streamID: s.id,
rst: true,
rstCode: http2.ErrCodeRefusedStream,
onWrite: func() {},
})
return
}
}
@ -336,7 +340,12 @@ func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(
}
if uint32(len(t.activeStreams)) >= t.maxStreams {
t.mu.Unlock()
t.controlBuf.put(&resetStream{streamID, http2.ErrCodeRefusedStream})
t.controlBuf.put(&cleanupStream{
streamID: streamID,
rst: true,
rstCode: http2.ErrCodeRefusedStream,
onWrite: func() {},
})
return
}
if streamID%2 != 1 || streamID <= t.maxStreamID {
@ -346,7 +355,6 @@ func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(
return true
}
t.maxStreamID = streamID
s.sendQuotaPool = newQuotaPool(int(t.streamSendQuota))
t.activeStreams[streamID] = s
if len(t.activeStreams) == 1 {
t.idle = time.Time{}
@ -367,19 +375,18 @@ func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(
}
t.stats.HandleRPC(s.ctx, inHeader)
}
s.ctxDone = s.ctx.Done()
s.wq = newWriteQuota(defaultWriteQuota, s.ctxDone)
s.trReader = &transportReader{
reader: &recvBufferReader{
ctx: s.ctx,
recv: s.buf,
ctx: s.ctx,
ctxDone: s.ctxDone,
recv: s.buf,
},
windowHandler: func(n int) {
t.updateWindow(s, uint32(n))
},
}
s.waiters = waiters{
ctx: s.ctx,
tctx: t.ctx,
}
handle(s)
return
}
@ -388,18 +395,26 @@ func (t *http2Server) operateHeaders(frame *http2.MetaHeadersFrame, handle func(
// typically run in a separate goroutine.
// traceCtx attaches trace to ctx and returns the new context.
func (t *http2Server) HandleStreams(handle func(*Stream), traceCtx func(context.Context, string) context.Context) {
defer close(t.readerDone)
for {
frame, err := t.framer.fr.ReadFrame()
atomic.StoreUint32(&t.activity, 1)
if err != nil {
if se, ok := err.(http2.StreamError); ok {
warningf("transport: http2Server.HandleStreams encountered http2.StreamError: %v", se)
t.mu.Lock()
s := t.activeStreams[se.StreamID]
t.mu.Unlock()
if s != nil {
t.closeStream(s)
t.closeStream(s, true, se.Code, nil)
} else {
t.controlBuf.put(&cleanupStream{
streamID: se.StreamID,
rst: true,
rstCode: se.Code,
onWrite: func() {},
})
}
t.controlBuf.put(&resetStream{se.StreamID, se.Code})
continue
}
if err == io.EOF || err == io.ErrUnexpectedEOF {
@ -453,33 +468,20 @@ func (t *http2Server) getStream(f http2.Frame) (*Stream, bool) {
// of stream if the application is requesting data larger in size than
// the window.
func (t *http2Server) adjustWindow(s *Stream, n uint32) {
s.mu.Lock()
defer s.mu.Unlock()
if s.state == streamDone {
return
}
if w := s.fc.maybeAdjust(n); w > 0 {
if cw := t.fc.resetPendingUpdate(); cw > 0 {
t.controlBuf.put(&windowUpdate{0, cw})
}
t.controlBuf.put(&windowUpdate{s.id, w})
t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id, increment: w})
}
}
// updateWindow adjusts the inbound quota for the stream and the transport.
// Window updates will deliver to the controller for sending when
// the cumulative quota exceeds the corresponding threshold.
func (t *http2Server) updateWindow(s *Stream, n uint32) {
s.mu.Lock()
defer s.mu.Unlock()
if s.state == streamDone {
return
}
if w := s.fc.onRead(n); w > 0 {
if cw := t.fc.resetPendingUpdate(); cw > 0 {
t.controlBuf.put(&windowUpdate{0, cw})
}
t.controlBuf.put(&windowUpdate{s.id, w})
t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id,
increment: w,
})
}
}
@ -493,8 +495,11 @@ func (t *http2Server) updateFlowControl(n uint32) {
}
t.initialWindowSize = int32(n)
t.mu.Unlock()
t.controlBuf.put(&windowUpdate{0, t.fc.newLimit(n)})
t.controlBuf.put(&settings{
t.controlBuf.put(&outgoingWindowUpdate{
streamID: 0,
increment: t.fc.newLimit(n),
})
t.controlBuf.put(&outgoingSettings{
ss: []http2.Setting{
{
ID: http2.SettingInitialWindowSize,
@ -519,23 +524,22 @@ func (t *http2Server) handleData(f *http2.DataFrame) {
// Decoupling the connection flow control will prevent other
// active(fast) streams from starving in presence of slow or
// inactive streams.
//
// Furthermore, if a bdpPing is being sent out we can piggyback
// connection's window update for the bytes we just received.
if w := t.fc.onData(uint32(size)); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{
streamID: 0,
increment: w,
})
}
if sendBDPPing {
if size != 0 { // Could be an empty frame.
t.controlBuf.put(&windowUpdate{0, uint32(size)})
// Avoid excessive ping detection (e.g. in an L7 proxy)
// by sending a window update prior to the BDP ping.
if w := t.fc.reset(); w > 0 {
t.controlBuf.put(&outgoingWindowUpdate{
streamID: 0,
increment: w,
})
}
t.controlBuf.put(bdpPing)
} else {
if err := t.fc.onData(uint32(size)); err != nil {
errorf("transport: http2Server %v", err)
t.Close()
return
}
if w := t.fc.onRead(uint32(size)); w > 0 {
t.controlBuf.put(&windowUpdate{0, w})
}
}
// Select the right stream to dispatch.
s, ok := t.getStream(f)
@ -543,23 +547,15 @@ func (t *http2Server) handleData(f *http2.DataFrame) {
return
}
if size > 0 {
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
}
if err := s.fc.onData(uint32(size)); err != nil {
s.mu.Unlock()
t.closeStream(s)
t.controlBuf.put(&resetStream{s.id, http2.ErrCodeFlowControl})
t.closeStream(s, true, http2.ErrCodeFlowControl, nil)
return
}
if f.Header().Flags.Has(http2.FlagDataPadded) {
if w := s.fc.onRead(uint32(size) - uint32(len(f.Data()))); w > 0 {
t.controlBuf.put(&windowUpdate{s.id, w})
t.controlBuf.put(&outgoingWindowUpdate{s.id, w})
}
}
s.mu.Unlock()
// TODO(bradfitz, zhaoq): A copy is required here because there is no
// guarantee f.Data() is consumed before the arrival of next frame.
// Can this copy be eliminated?
@ -571,11 +567,7 @@ func (t *http2Server) handleData(f *http2.DataFrame) {
}
if f.Header().Flags.Has(http2.FlagDataEndStream) {
// Received the end of stream from the client.
s.mu.Lock()
if s.state != streamDone {
s.state = streamReadDone
}
s.mu.Unlock()
s.compareAndSwapState(streamActive, streamReadDone)
s.write(recvMsg{err: io.EOF})
}
}
@ -585,50 +577,21 @@ func (t *http2Server) handleRSTStream(f *http2.RSTStreamFrame) {
if !ok {
return
}
t.closeStream(s)
t.closeStream(s, false, 0, nil)
}
func (t *http2Server) handleSettings(f *http2.SettingsFrame) {
if f.IsAck() {
return
}
var rs []http2.Setting
var ps []http2.Setting
var ss []http2.Setting
f.ForeachSetting(func(s http2.Setting) error {
if t.isRestrictive(s) {
rs = append(rs, s)
} else {
ps = append(ps, s)
}
ss = append(ss, s)
return nil
})
t.applySettings(rs)
t.controlBuf.put(&settingsAck{})
t.applySettings(ps)
}
func (t *http2Server) isRestrictive(s http2.Setting) bool {
switch s.ID {
case http2.SettingInitialWindowSize:
// Note: we don't acquire a lock here to read streamSendQuota
// because the same goroutine updates it later.
return s.Val < t.streamSendQuota
}
return false
}
func (t *http2Server) applySettings(ss []http2.Setting) {
for _, s := range ss {
if s.ID == http2.SettingInitialWindowSize {
t.mu.Lock()
for _, stream := range t.activeStreams {
stream.sendQuotaPool.addAndUpdate(int(s.Val) - int(t.streamSendQuota))
}
t.streamSendQuota = s.Val
t.mu.Unlock()
}
}
t.controlBuf.put(&incomingSettings{
ss: ss,
})
}
const (
@ -687,30 +650,15 @@ func (t *http2Server) handlePing(f *http2.PingFrame) {
}
func (t *http2Server) handleWindowUpdate(f *http2.WindowUpdateFrame) {
id := f.Header().StreamID
incr := f.Increment
if id == 0 {
t.sendQuotaPool.add(int(incr))
return
}
if s, ok := t.getStream(f); ok {
s.sendQuotaPool.add(int(incr))
}
t.controlBuf.put(&incomingWindowUpdate{
streamID: f.Header().StreamID,
increment: f.Increment,
})
}
// WriteHeader sends the header metedata md back to the client.
func (t *http2Server) WriteHeader(s *Stream, md metadata.MD) error {
select {
case <-s.ctx.Done():
return ContextErr(s.ctx.Err())
case <-t.ctx.Done():
return ErrConnClosing
default:
}
s.mu.Lock()
if s.headerOk || s.state == streamDone {
s.mu.Unlock()
if s.headerOk || s.getState() == streamDone {
return ErrIllegalHeaderWrite
}
s.headerOk = true
@ -722,7 +670,6 @@ func (t *http2Server) WriteHeader(s *Stream, md metadata.MD) error {
}
}
md = s.header
s.mu.Unlock()
// TODO(mmukhi): Benchmark if the performance gets better if count the metadata and other header fields
// first and create a slice of that exact size.
headerFields := make([]hpack.HeaderField, 0, 2) // at least :status, content-type will be there if none else.
@ -744,6 +691,10 @@ func (t *http2Server) WriteHeader(s *Stream, md metadata.MD) error {
streamID: s.id,
hf: headerFields,
endStream: false,
onWrite: func() {
atomic.StoreUint32(&t.resetPingStrikes, 1)
},
wq: s.wq,
})
if t.stats != nil {
// Note: WireLength is not set in outHeader.
@ -759,35 +710,19 @@ func (t *http2Server) WriteHeader(s *Stream, md metadata.MD) error {
// TODO(zhaoq): Now it indicates the end of entire stream. Revisit if early
// OK is adopted.
func (t *http2Server) WriteStatus(s *Stream, st *status.Status) error {
select {
case <-t.ctx.Done():
return ErrConnClosing
default:
if !s.headerOk && s.header.Len() > 0 {
if err := t.WriteHeader(s, nil); err != nil {
return err
}
} else {
if s.getState() == streamDone {
return nil
}
}
var headersSent, hasHeader bool
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return nil
}
if s.headerOk {
headersSent = true
}
if s.header.Len() > 0 {
hasHeader = true
}
s.mu.Unlock()
if !headersSent && hasHeader {
t.WriteHeader(s, nil)
headersSent = true
}
// TODO(mmukhi): Benchmark if the performance gets better if count the metadata and other header fields
// first and create a slice of that exact size.
headerFields := make([]hpack.HeaderField, 0, 2) // grpc-status and grpc-message will be there if none else.
if !headersSent {
if !s.headerOk {
headerFields = append(headerFields, hpack.HeaderField{Name: ":status", Value: "200"})
headerFields = append(headerFields, hpack.HeaderField{Name: "content-type", Value: contentType(s.contentSubtype)})
}
@ -814,108 +749,66 @@ func (t *http2Server) WriteStatus(s *Stream, st *status.Status) error {
headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)})
}
}
t.controlBuf.put(&headerFrame{
trailer := &headerFrame{
streamID: s.id,
hf: headerFields,
endStream: true,
})
onWrite: func() {
atomic.StoreUint32(&t.resetPingStrikes, 1)
},
}
t.closeStream(s, false, 0, trailer)
if t.stats != nil {
t.stats.HandleRPC(s.Context(), &stats.OutTrailer{})
}
t.closeStream(s)
return nil
}
// Write converts the data into HTTP2 data frame and sends it out. Non-nil error
// is returns if it fails (e.g., framing error, transport error).
func (t *http2Server) Write(s *Stream, hdr []byte, data []byte, opts *Options) error {
select {
case <-s.ctx.Done():
return ContextErr(s.ctx.Err())
case <-t.ctx.Done():
return ErrConnClosing
default:
if !s.headerOk { // Headers haven't been written yet.
if err := t.WriteHeader(s, nil); err != nil {
// TODO(mmukhi, dfawley): Make sure this is the right code to return.
return streamErrorf(codes.Internal, "transport: %v", err)
}
} else {
// Writing headers checks for this condition.
if s.getState() == streamDone {
// TODO(mmukhi, dfawley): Should the server write also return io.EOF?
s.cancel()
select {
case <-t.ctx.Done():
return ErrConnClosing
default:
}
return ContextErr(s.ctx.Err())
}
}
var writeHeaderFrame bool
s.mu.Lock()
if !s.headerOk {
writeHeaderFrame = true
}
s.mu.Unlock()
if writeHeaderFrame {
t.WriteHeader(s, nil)
}
// Add data to header frame so that we can equally distribute data across frames.
// Add some data to header frame so that we can equally distribute bytes across frames.
emptyLen := http2MaxFrameLen - len(hdr)
if emptyLen > len(data) {
emptyLen = len(data)
}
hdr = append(hdr, data[:emptyLen]...)
data = data[emptyLen:]
var (
streamQuota int
streamQuotaVer uint32
err error
)
for _, r := range [][]byte{hdr, data} {
for len(r) > 0 {
size := http2MaxFrameLen
if size > len(r) {
size = len(r)
}
if streamQuota == 0 { // Used up all the locally cached stream quota.
// Get all the stream quota there is.
streamQuota, streamQuotaVer, err = s.sendQuotaPool.get(math.MaxInt32, s.waiters)
if err != nil {
return err
}
}
if size > streamQuota {
size = streamQuota
}
// Get size worth quota from transport.
tq, _, err := t.sendQuotaPool.get(size, s.waiters)
if err != nil {
return err
}
if tq < size {
size = tq
}
ltq, _, err := t.localSendQuota.get(size, s.waiters)
if err != nil {
// Add the acquired quota back to transport.
t.sendQuotaPool.add(tq)
return err
}
// even if ltq is smaller than size we don't adjust size since,
// ltq is only a soft limit.
streamQuota -= size
p := r[:size]
success := func() {
ltq := ltq
t.controlBuf.put(&dataFrame{streamID: s.id, endStream: false, d: p, f: func() {
t.localSendQuota.add(ltq)
}})
r = r[size:]
}
failure := func() { // The stream quota version must have changed.
// Our streamQuota cache is invalidated now, so give it back.
s.sendQuotaPool.lockedAdd(streamQuota + size)
}
if !s.sendQuotaPool.compareAndExecute(streamQuotaVer, success, failure) {
// Couldn't send this chunk out.
t.sendQuotaPool.add(size)
t.localSendQuota.add(ltq)
streamQuota = 0
}
df := &dataFrame{
streamID: s.id,
h: hdr,
d: data,
onEachWrite: func() {
atomic.StoreUint32(&t.resetPingStrikes, 1)
},
}
if err := s.wq.get(int32(len(hdr) + len(data))); err != nil {
select {
case <-t.ctx.Done():
return ErrConnClosing
default:
}
return ContextErr(s.ctx.Err())
}
if streamQuota > 0 {
// ADd the left over quota back to stream.
s.sendQuotaPool.add(streamQuota)
}
return nil
return t.controlBuf.put(df)
}
// keepalive running in a separate goroutine does the following:
@ -998,136 +891,6 @@ func (t *http2Server) keepalive() {
}
}
var goAwayPing = &ping{data: [8]byte{1, 6, 1, 8, 0, 3, 3, 9}}
// TODO(mmukhi): A lot of this code(and code in other places in the tranpsort layer)
// is duplicated between the client and the server.
// The transport layer needs to be refactored to take care of this.
func (t *http2Server) itemHandler(i item) error {
switch i := i.(type) {
case *dataFrame:
// Reset ping strikes when sending data since this might cause
// the peer to send ping.
atomic.StoreUint32(&t.resetPingStrikes, 1)
if err := t.framer.fr.WriteData(i.streamID, i.endStream, i.d); err != nil {
return err
}
i.f()
return nil
case *headerFrame:
t.hBuf.Reset()
for _, f := range i.hf {
t.hEnc.WriteField(f)
}
first := true
endHeaders := false
for !endHeaders {
size := t.hBuf.Len()
if size > http2MaxFrameLen {
size = http2MaxFrameLen
} else {
endHeaders = true
}
var err error
if first {
first = false
err = t.framer.fr.WriteHeaders(http2.HeadersFrameParam{
StreamID: i.streamID,
BlockFragment: t.hBuf.Next(size),
EndStream: i.endStream,
EndHeaders: endHeaders,
})
} else {
err = t.framer.fr.WriteContinuation(
i.streamID,
endHeaders,
t.hBuf.Next(size),
)
}
if err != nil {
return err
}
}
atomic.StoreUint32(&t.resetPingStrikes, 1)
return nil
case *windowUpdate:
return t.framer.fr.WriteWindowUpdate(i.streamID, i.increment)
case *settings:
return t.framer.fr.WriteSettings(i.ss...)
case *settingsAck:
return t.framer.fr.WriteSettingsAck()
case *resetStream:
return t.framer.fr.WriteRSTStream(i.streamID, i.code)
case *goAway:
t.mu.Lock()
if t.state == closing {
t.mu.Unlock()
// The transport is closing.
return fmt.Errorf("transport: Connection closing")
}
sid := t.maxStreamID
if !i.headsUp {
// Stop accepting more streams now.
t.state = draining
if len(t.activeStreams) == 0 {
i.closeConn = true
}
t.mu.Unlock()
if err := t.framer.fr.WriteGoAway(sid, i.code, i.debugData); err != nil {
return err
}
if i.closeConn {
// Abruptly close the connection following the GoAway (via
// loopywriter). But flush out what's inside the buffer first.
t.controlBuf.put(&flushIO{closeTr: true})
}
return nil
}
t.mu.Unlock()
// For a graceful close, send out a GoAway with stream ID of MaxUInt32,
// Follow that with a ping and wait for the ack to come back or a timer
// to expire. During this time accept new streams since they might have
// originated before the GoAway reaches the client.
// After getting the ack or timer expiration send out another GoAway this
// time with an ID of the max stream server intends to process.
if err := t.framer.fr.WriteGoAway(math.MaxUint32, http2.ErrCodeNo, []byte{}); err != nil {
return err
}
if err := t.framer.fr.WritePing(false, goAwayPing.data); err != nil {
return err
}
go func() {
timer := time.NewTimer(time.Minute)
defer timer.Stop()
select {
case <-t.drainChan:
case <-timer.C:
case <-t.ctx.Done():
return
}
t.controlBuf.put(&goAway{code: i.code, debugData: i.debugData})
}()
return nil
case *flushIO:
if err := t.framer.writer.Flush(); err != nil {
return err
}
if i.closeTr {
return ErrConnClosing
}
return nil
case *ping:
if !i.ack {
t.bdpEst.timesnap(i.data)
}
return t.framer.fr.WritePing(i.ack, i.data)
default:
err := status.Errorf(codes.Internal, "transport: http2Server.controller got unexpected item type %t", i)
errorf("%v", err)
return err
}
}
// Close starts shutting down the http2Server transport.
// TODO(zhaoq): Now the destruction is not blocked on any pending streams. This
// could cause some resource issue. Revisit this later.
@ -1141,6 +904,7 @@ func (t *http2Server) Close() error {
streams := t.activeStreams
t.activeStreams = nil
t.mu.Unlock()
t.controlBuf.finish()
t.cancel()
err := t.conn.Close()
// Cancel all active streams.
@ -1156,27 +920,36 @@ func (t *http2Server) Close() error {
// closeStream clears the footprint of a stream when the stream is not needed
// any more.
func (t *http2Server) closeStream(s *Stream) {
t.mu.Lock()
delete(t.activeStreams, s.id)
if len(t.activeStreams) == 0 {
t.idle = time.Now()
func (t *http2Server) closeStream(s *Stream, rst bool, rstCode http2.ErrCode, hdr *headerFrame) {
if s.swapState(streamDone) == streamDone {
// If the stream was already done, return.
return
}
if t.state == draining && len(t.activeStreams) == 0 {
defer t.controlBuf.put(&flushIO{closeTr: true})
}
t.mu.Unlock()
// In case stream sending and receiving are invoked in separate
// goroutines (e.g., bi-directional streaming), cancel needs to be
// called to interrupt the potential blocking on other goroutines.
s.cancel()
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
cleanup := &cleanupStream{
streamID: s.id,
rst: rst,
rstCode: rstCode,
onWrite: func() {
t.mu.Lock()
if t.activeStreams != nil {
delete(t.activeStreams, s.id)
if len(t.activeStreams) == 0 {
t.idle = time.Now()
}
}
t.mu.Unlock()
},
}
if hdr != nil {
hdr.cleanup = cleanup
t.controlBuf.put(hdr)
} else {
t.controlBuf.put(cleanup)
}
s.state = streamDone
s.mu.Unlock()
}
func (t *http2Server) RemoteAddr() net.Addr {
@ -1197,6 +970,63 @@ func (t *http2Server) drain(code http2.ErrCode, debugData []byte) {
t.controlBuf.put(&goAway{code: code, debugData: debugData, headsUp: true})
}
var goAwayPing = &ping{data: [8]byte{1, 6, 1, 8, 0, 3, 3, 9}}
// Handles outgoing GoAway and returns true if loopy needs to put itself
// in draining mode.
func (t *http2Server) outgoingGoAwayHandler(g *goAway) (bool, error) {
t.mu.Lock()
if t.state == closing { // TODO(mmukhi): This seems unnecessary.
t.mu.Unlock()
// The transport is closing.
return false, ErrConnClosing
}
sid := t.maxStreamID
if !g.headsUp {
// Stop accepting more streams now.
t.state = draining
if len(t.activeStreams) == 0 {
g.closeConn = true
}
t.mu.Unlock()
if err := t.framer.fr.WriteGoAway(sid, g.code, g.debugData); err != nil {
return false, err
}
if g.closeConn {
// Abruptly close the connection following the GoAway (via
// loopywriter). But flush out what's inside the buffer first.
t.framer.writer.Flush()
return false, fmt.Errorf("transport: Connection closing")
}
return true, nil
}
t.mu.Unlock()
// For a graceful close, send out a GoAway with stream ID of MaxUInt32,
// Follow that with a ping and wait for the ack to come back or a timer
// to expire. During this time accept new streams since they might have
// originated before the GoAway reaches the client.
// After getting the ack or timer expiration send out another GoAway this
// time with an ID of the max stream server intends to process.
if err := t.framer.fr.WriteGoAway(math.MaxUint32, http2.ErrCodeNo, []byte{}); err != nil {
return false, err
}
if err := t.framer.fr.WritePing(false, goAwayPing.data); err != nil {
return false, err
}
go func() {
timer := time.NewTimer(time.Minute)
defer timer.Stop()
select {
case <-t.drainChan:
case <-timer.C:
case <-t.ctx.Done():
return
}
t.controlBuf.put(&goAway{code: g.code, debugData: g.debugData})
}()
return false, nil
}
var rgen = rand.New(rand.NewSource(time.Now().UnixNano()))
func getJitter(v time.Duration) time.Duration {

View File

@ -23,7 +23,6 @@ import (
"bytes"
"encoding/base64"
"fmt"
"io"
"net"
"net/http"
"strconv"
@ -509,19 +508,63 @@ func decodeGrpcMessageUnchecked(msg string) string {
return buf.String()
}
type bufWriter struct {
buf []byte
offset int
batchSize int
conn net.Conn
err error
onFlush func()
}
func newBufWriter(conn net.Conn, batchSize int) *bufWriter {
return &bufWriter{
buf: make([]byte, batchSize*2),
batchSize: batchSize,
conn: conn,
}
}
func (w *bufWriter) Write(b []byte) (n int, err error) {
if w.err != nil {
return 0, w.err
}
n = copy(w.buf[w.offset:], b)
w.offset += n
if w.offset >= w.batchSize {
err = w.Flush()
}
return n, err
}
func (w *bufWriter) Flush() error {
if w.err != nil {
return w.err
}
if w.offset == 0 {
return nil
}
if w.onFlush != nil {
w.onFlush()
}
_, w.err = w.conn.Write(w.buf[:w.offset])
w.offset = 0
return w.err
}
type framer struct {
numWriters int32
reader io.Reader
writer *bufio.Writer
fr *http2.Framer
writer *bufWriter
fr *http2.Framer
}
func newFramer(conn net.Conn, writeBufferSize, readBufferSize int) *framer {
r := bufio.NewReaderSize(conn, readBufferSize)
w := newBufWriter(conn, writeBufferSize)
f := &framer{
reader: bufio.NewReaderSize(conn, readBufferSize),
writer: bufio.NewWriterSize(conn, writeBufferSize),
writer: w,
fr: http2.NewFramer(w, r),
}
f.fr = http2.NewFramer(f.writer, f.reader)
// Opt-in to Frame reuse API on framer to reduce garbage.
// Frames aren't safe to read from after a subsequent call to ReadFrame.
f.fr.SetReuseFrames()

View File

@ -19,16 +19,17 @@
// Package transport defines and implements message oriented communication
// channel to complete various transactions (e.g., an RPC). It is meant for
// grpc-internal usage and is not intended to be imported directly by users.
package transport // import "google.golang.org/grpc/transport"
package transport // externally used as import "google.golang.org/grpc/transport"
import (
"errors"
"fmt"
"io"
"net"
"sync"
"sync/atomic"
"golang.org/x/net/context"
"golang.org/x/net/http2"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/keepalive"
@ -57,6 +58,7 @@ type recvBuffer struct {
c chan recvMsg
mu sync.Mutex
backlog []recvMsg
err error
}
func newRecvBuffer() *recvBuffer {
@ -68,6 +70,13 @@ func newRecvBuffer() *recvBuffer {
func (b *recvBuffer) put(r recvMsg) {
b.mu.Lock()
if b.err != nil {
b.mu.Unlock()
// An error had occurred earlier, don't accept more
// data or errors.
return
}
b.err = r.err
if len(b.backlog) == 0 {
select {
case b.c <- r:
@ -101,14 +110,15 @@ func (b *recvBuffer) get() <-chan recvMsg {
return b.c
}
//
// recvBufferReader implements io.Reader interface to read the data from
// recvBuffer.
type recvBufferReader struct {
ctx context.Context
goAway chan struct{}
recv *recvBuffer
last []byte // Stores the remaining data in the previous calls.
err error
ctx context.Context
ctxDone <-chan struct{} // cache of ctx.Done() (for performance).
recv *recvBuffer
last []byte // Stores the remaining data in the previous calls.
err error
}
// Read reads the next len(p) bytes from last. If last is drained, it tries to
@ -130,10 +140,8 @@ func (r *recvBufferReader) read(p []byte) (n int, err error) {
return copied, nil
}
select {
case <-r.ctx.Done():
case <-r.ctxDone:
return 0, ContextErr(r.ctx.Err())
case <-r.goAway:
return 0, errStreamDrain
case m := <-r.recv.get():
r.recv.load()
if m.err != nil {
@ -145,61 +153,7 @@ func (r *recvBufferReader) read(p []byte) (n int, err error) {
}
}
// All items in an out of a controlBuffer should be the same type.
type item interface {
item()
}
// controlBuffer is an unbounded channel of item.
type controlBuffer struct {
c chan item
mu sync.Mutex
backlog []item
}
func newControlBuffer() *controlBuffer {
b := &controlBuffer{
c: make(chan item, 1),
}
return b
}
func (b *controlBuffer) put(r item) {
b.mu.Lock()
if len(b.backlog) == 0 {
select {
case b.c <- r:
b.mu.Unlock()
return
default:
}
}
b.backlog = append(b.backlog, r)
b.mu.Unlock()
}
func (b *controlBuffer) load() {
b.mu.Lock()
if len(b.backlog) > 0 {
select {
case b.c <- b.backlog[0]:
b.backlog[0] = nil
b.backlog = b.backlog[1:]
default:
}
}
b.mu.Unlock()
}
// get returns the channel that receives an item in the buffer.
//
// Upon receipt of an item, the caller should call load to send another
// item onto the channel if there is any.
func (b *controlBuffer) get() <-chan item {
return b.c
}
type streamState uint8
type streamState uint32
const (
streamActive streamState = iota
@ -214,8 +168,8 @@ type Stream struct {
st ServerTransport // nil for client side Stream
ctx context.Context // the associated context of the stream
cancel context.CancelFunc // always nil for client side Stream
done chan struct{} // closed when the final status arrives
goAway chan struct{} // closed when a GOAWAY control message is received
done chan struct{} // closed at the end of stream to unblock writers. On the client side.
ctxDone <-chan struct{} // same as done chan but for server side. Cache of ctx.Done() (for performance)
method string // the associated RPC method of the stream
recvCompress string
sendCompress string
@ -223,47 +177,51 @@ type Stream struct {
trReader io.Reader
fc *inFlow
recvQuota uint32
waiters waiters
wq *writeQuota
// Callback to state application's intentions to read data. This
// is used to adjust flow control, if needed.
requestRead func(int)
sendQuotaPool *quotaPool
headerChan chan struct{} // closed to indicate the end of header metadata.
headerDone bool // set when headerChan is closed. Used to avoid closing headerChan multiple times.
header metadata.MD // the received header metadata.
trailer metadata.MD // the key-value map of trailer metadata.
headerChan chan struct{} // closed to indicate the end of header metadata.
headerDone uint32 // set when headerChan is closed. Used to avoid closing headerChan multiple times.
header metadata.MD // the received header metadata.
trailer metadata.MD // the key-value map of trailer metadata.
mu sync.RWMutex // guard the following
headerOk bool // becomes true from the first header is about to send
headerOk bool // becomes true from the first header is about to send
state streamState
status *status.Status // the status error received from the server
rstStream bool // indicates whether a RST_STREAM frame needs to be sent
rstError http2.ErrCode // the error that needs to be sent along with the RST_STREAM frame
bytesReceived bool // indicates whether any bytes have been received on this stream
unprocessed bool // set if the server sends a refused stream or GOAWAY including this stream
bytesReceived uint32 // indicates whether any bytes have been received on this stream
unprocessed uint32 // set if the server sends a refused stream or GOAWAY including this stream
// contentSubtype is the content-subtype for requests.
// this must be lowercase or the behavior is undefined.
contentSubtype string
}
func (s *Stream) swapState(st streamState) streamState {
return streamState(atomic.SwapUint32((*uint32)(&s.state), uint32(st)))
}
func (s *Stream) compareAndSwapState(oldState, newState streamState) bool {
return atomic.CompareAndSwapUint32((*uint32)(&s.state), uint32(oldState), uint32(newState))
}
func (s *Stream) getState() streamState {
return streamState(atomic.LoadUint32((*uint32)(&s.state)))
}
func (s *Stream) waitOnHeader() error {
if s.headerChan == nil {
// On the server headerChan is always nil since a stream originates
// only after having received headers.
return nil
}
wc := s.waiters
select {
case <-wc.ctx.Done():
return ContextErr(wc.ctx.Err())
case <-wc.goAway:
return errStreamDrain
case <-s.ctx.Done():
return ContextErr(s.ctx.Err())
case <-s.headerChan:
return nil
}
@ -289,12 +247,6 @@ func (s *Stream) Done() <-chan struct{} {
return s.done
}
// GoAway returns a channel which is closed when the server sent GoAways signal
// before this stream was initiated.
func (s *Stream) GoAway() <-chan struct{} {
return s.goAway
}
// Header acquires the key-value pairs of header metadata once it
// is available. It blocks until i) the metadata is ready or ii) there is no
// header metadata or iii) the stream is canceled/expired.
@ -303,6 +255,9 @@ func (s *Stream) Header() (metadata.MD, error) {
// Even if the stream is closed, header is returned if available.
select {
case <-s.headerChan:
if s.header == nil {
return nil, nil
}
return s.header.Copy(), nil
default:
}
@ -312,10 +267,10 @@ func (s *Stream) Header() (metadata.MD, error) {
// Trailer returns the cached trailer metedata. Note that if it is not called
// after the entire stream is done, it could return an empty MD. Client
// side only.
// It can be safely read only after stream has ended that is either read
// or write have returned io.EOF.
func (s *Stream) Trailer() metadata.MD {
s.mu.RLock()
c := s.trailer.Copy()
s.mu.RUnlock()
return c
}
@ -345,24 +300,23 @@ func (s *Stream) Method() string {
}
// Status returns the status received from the server.
// Status can be read safely only after the stream has ended,
// that is, read or write has returned io.EOF.
func (s *Stream) Status() *status.Status {
return s.status
}
// SetHeader sets the header metadata. This can be called multiple times.
// Server side only.
// This should not be called in parallel to other data writes.
func (s *Stream) SetHeader(md metadata.MD) error {
s.mu.Lock()
if s.headerOk || s.state == streamDone {
s.mu.Unlock()
return ErrIllegalHeaderWrite
}
if md.Len() == 0 {
s.mu.Unlock()
return nil
}
if s.headerOk || atomic.LoadUint32((*uint32)(&s.state)) == uint32(streamDone) {
return ErrIllegalHeaderWrite
}
s.header = metadata.Join(s.header, md)
s.mu.Unlock()
return nil
}
@ -376,13 +330,12 @@ func (s *Stream) SendHeader(md metadata.MD) error {
// SetTrailer sets the trailer metadata which will be sent with the RPC status
// by the server. This can be called multiple times. Server side only.
// This should not be called parallel to other data writes.
func (s *Stream) SetTrailer(md metadata.MD) error {
if md.Len() == 0 {
return nil
}
s.mu.Lock()
s.trailer = metadata.Join(s.trailer, md)
s.mu.Unlock()
return nil
}
@ -422,29 +375,15 @@ func (t *transportReader) Read(p []byte) (n int, err error) {
return
}
// finish sets the stream's state and status, and closes the done channel.
// s.mu must be held by the caller. st must always be non-nil.
func (s *Stream) finish(st *status.Status) {
s.status = st
s.state = streamDone
close(s.done)
}
// BytesReceived indicates whether any bytes have been received on this stream.
func (s *Stream) BytesReceived() bool {
s.mu.Lock()
br := s.bytesReceived
s.mu.Unlock()
return br
return atomic.LoadUint32(&s.bytesReceived) == 1
}
// Unprocessed indicates whether the server did not process this stream --
// i.e. it sent a refused stream or GOAWAY including this stream ID.
func (s *Stream) Unprocessed() bool {
s.mu.Lock()
br := s.unprocessed
s.mu.Unlock()
return br
return atomic.LoadUint32(&s.unprocessed) == 1
}
// GoString is implemented by Stream so context.String() won't
@ -694,6 +633,9 @@ var (
// connection is draining. This could be caused by goaway or balancer
// removing the address.
errStreamDrain = streamErrorf(codes.Unavailable, "the connection is draining")
// errStreamDone is returned from write at the client side to indiacte application
// layer of an error.
errStreamDone = errors.New("tne stream is done")
// StatusGoAway indicates that the server sent a GOAWAY that included this
// stream's ID in unprocessed RPCs.
statusGoAway = status.New(codes.Unavailable, "the stream is rejected because server is draining the connection")
@ -711,15 +653,6 @@ func (e StreamError) Error() string {
return fmt.Sprintf("stream error: code = %s desc = %q", e.Code, e.Desc)
}
// waiters are passed to quotaPool get methods to
// wait on in addition to waiting on quota.
type waiters struct {
ctx context.Context
tctx context.Context
done chan struct{}
goAway chan struct{}
}
// GoAwayReason contains the reason for the GoAway frame received.
type GoAwayReason uint8
@ -733,39 +666,3 @@ const (
// "too_many_pings".
GoAwayTooManyPings GoAwayReason = 2
)
// loopyWriter is run in a separate go routine. It is the single code path that will
// write data on wire.
func loopyWriter(ctx context.Context, cbuf *controlBuffer, handler func(item) error) {
for {
select {
case i := <-cbuf.get():
cbuf.load()
if err := handler(i); err != nil {
errorf("transport: Error while handling item. Err: %v", err)
return
}
case <-ctx.Done():
return
}
hasData:
for {
select {
case i := <-cbuf.get():
cbuf.load()
if err := handler(i); err != nil {
errorf("transport: Error while handling item. Err: %v", err)
return
}
case <-ctx.Done():
return
default:
if err := handler(&flushIO{}); err != nil {
errorf("transport: Error while flushing. Err: %v", err)
return
}
break hasData
}
}
}
}

File diff suppressed because it is too large Load Diff