grpc-go/xds/internal/balancer/ringhash/ring.go

183 lines
6.3 KiB
Go

/*
*
* Copyright 2021 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package ringhash
import (
"math"
"sort"
"strconv"
xxhash "github.com/cespare/xxhash/v2"
"google.golang.org/grpc/internal/grpclog"
"google.golang.org/grpc/resolver"
)
type ring struct {
items []*ringEntry
}
type subConnWithWeight struct {
sc *subConn
weight float64
}
type ringEntry struct {
idx int
hash uint64
sc *subConn
}
// newRing creates a ring from the subConns stored in the AddressMap. The ring
// size is limited by the passed in max/min.
//
// ring entries will be created for each subConn, and subConn with high weight
// (specified by the address) may have multiple entries.
//
// For example, for subConns with weights {a:3, b:3, c:4}, a generated ring of
// size 10 could be:
// - {idx:0 hash:3689675255460411075 b}
// - {idx:1 hash:4262906501694543955 c}
// - {idx:2 hash:5712155492001633497 c}
// - {idx:3 hash:8050519350657643659 b}
// - {idx:4 hash:8723022065838381142 b}
// - {idx:5 hash:11532782514799973195 a}
// - {idx:6 hash:13157034721563383607 c}
// - {idx:7 hash:14468677667651225770 c}
// - {idx:8 hash:17336016884672388720 a}
// - {idx:9 hash:18151002094784932496 a}
//
// To pick from a ring, a binary search will be done for the given target hash,
// and first item with hash >= given hash will be returned.
//
// Must be called with a non-empty subConns map.
func newRing(subConns *resolver.AddressMap, minRingSize, maxRingSize uint64, logger *grpclog.PrefixLogger) *ring {
if logger.V(2) {
logger.Infof("newRing: number of subConns is %d, minRingSize is %d, maxRingSize is %d", subConns.Len(), minRingSize, maxRingSize)
}
// https://github.com/envoyproxy/envoy/blob/765c970f06a4c962961a0e03a467e165b276d50f/source/common/upstream/ring_hash_lb.cc#L114
normalizedWeights, minWeight := normalizeWeights(subConns)
if logger.V(2) {
logger.Infof("newRing: normalized subConn weights is %v", normalizedWeights)
}
// Normalized weights for {3,3,4} is {0.3,0.3,0.4}.
// Scale up the size of the ring such that the least-weighted host gets a
// whole number of hashes on the ring.
//
// Note that size is limited by the input max/min.
scale := math.Min(math.Ceil(minWeight*float64(minRingSize))/minWeight, float64(maxRingSize))
ringSize := math.Ceil(scale)
items := make([]*ringEntry, 0, int(ringSize))
if logger.V(2) {
logger.Infof("newRing: creating new ring of size %v", ringSize)
}
// For each entry, scale*weight nodes are generated in the ring.
//
// Not all of these are whole numbers. E.g. for weights {a:3,b:3,c:4}, if
// ring size is 7, scale is 6.66. The numbers of nodes will be
// {a,a,b,b,c,c,c}.
//
// A hash is generated for each item, and later the results will be sorted
// based on the hash.
var currentHashes, targetHashes float64
for _, scw := range normalizedWeights {
targetHashes += scale * scw.weight
// This index ensures that ring entries corresponding to the same
// address hash to different values. And since this index is
// per-address, these entries hash to the same value across address
// updates.
idx := 0
for currentHashes < targetHashes {
h := xxhash.Sum64String(scw.sc.addr + "_" + strconv.Itoa(idx))
items = append(items, &ringEntry{hash: h, sc: scw.sc})
idx++
currentHashes++
}
}
// Sort items based on hash, to prepare for binary search.
sort.Slice(items, func(i, j int) bool { return items[i].hash < items[j].hash })
for i, ii := range items {
ii.idx = i
}
return &ring{items: items}
}
// normalizeWeights calculates the normalized weights for each subConn in the
// given subConns map. It returns a slice of subConnWithWeight structs, where
// each struct contains a subConn and its corresponding weight. The function
// also returns the minimum weight among all subConns.
//
// The normalized weight of each subConn is calculated by dividing its weight
// attribute by the sum of all subConn weights. If the weight attribute is not
// found on the address, a default weight of 1 is used.
//
// The addresses are sorted in ascending order to ensure consistent results.
//
// Must be called with a non-empty subConns map.
func normalizeWeights(subConns *resolver.AddressMap) ([]subConnWithWeight, float64) {
var weightSum uint32
// Since attributes are explicitly ignored in the AddressMap key, we need to
// iterate over the values to get the weights.
scVals := subConns.Values()
for _, a := range scVals {
weightSum += a.(*subConn).weight
}
ret := make([]subConnWithWeight, 0, subConns.Len())
min := 1.0
for _, a := range scVals {
scInfo := a.(*subConn)
// (*subConn).weight is set to 1 if the weight attribute is not found on
// the address. And since this function is guaranteed to be called with
// a non-empty subConns map, weightSum is guaranteed to be non-zero. So,
// we need not worry about divide by zero error here.
nw := float64(scInfo.weight) / float64(weightSum)
ret = append(ret, subConnWithWeight{sc: scInfo, weight: nw})
min = math.Min(min, nw)
}
// Sort the addresses to return consistent results.
//
// Note: this might not be necessary, but this makes sure the ring is
// consistent as long as the addresses are the same, for example, in cases
// where an address is added and then removed, the RPCs will still pick the
// same old SubConn.
sort.Slice(ret, func(i, j int) bool { return ret[i].sc.addr < ret[j].sc.addr })
return ret, min
}
// pick does a binary search. It returns the item with smallest index i that
// r.items[i].hash >= h.
func (r *ring) pick(h uint64) *ringEntry {
i := sort.Search(len(r.items), func(i int) bool { return r.items[i].hash >= h })
if i == len(r.items) {
// If not found, and h is greater than the largest hash, return the
// first item.
i = 0
}
return r.items[i]
}
// next returns the next entry.
func (r *ring) next(e *ringEntry) *ringEntry {
return r.items[(e.idx+1)%len(r.items)]
}