mirror of https://github.com/grpc/grpc-go.git
194 lines
4.0 KiB
Go
194 lines
4.0 KiB
Go
/*
|
|
*
|
|
* Copyright 2019 gRPC authors.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package wrr
|
|
|
|
import (
|
|
"errors"
|
|
"math"
|
|
"math/rand"
|
|
"strconv"
|
|
"testing"
|
|
|
|
"github.com/google/go-cmp/cmp"
|
|
"google.golang.org/grpc/internal/grpctest"
|
|
)
|
|
|
|
type s struct {
|
|
grpctest.Tester
|
|
}
|
|
|
|
func Test(t *testing.T) {
|
|
grpctest.RunSubTests(t, s{})
|
|
}
|
|
|
|
const iterCount = 10000
|
|
|
|
func equalApproximate(a, b float64) error {
|
|
opt := cmp.Comparer(func(x, y float64) bool {
|
|
delta := math.Abs(x - y)
|
|
mean := math.Abs(x+y) / 2.0
|
|
return delta/mean < 0.05
|
|
})
|
|
if !cmp.Equal(a, b, opt) {
|
|
return errors.New(cmp.Diff(a, b))
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func testWRRNext(t *testing.T, newWRR func() WRR) {
|
|
tests := []struct {
|
|
name string
|
|
weights []int64
|
|
}{
|
|
{
|
|
name: "1-1-1",
|
|
weights: []int64{1, 1, 1},
|
|
},
|
|
{
|
|
name: "1-2-3",
|
|
weights: []int64{1, 2, 3},
|
|
},
|
|
{
|
|
name: "5-3-2",
|
|
weights: []int64{5, 3, 2},
|
|
},
|
|
{
|
|
name: "17-23-37",
|
|
weights: []int64{17, 23, 37},
|
|
},
|
|
{
|
|
name: "no items",
|
|
weights: []int64{},
|
|
},
|
|
}
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
w := newWRR()
|
|
if len(tt.weights) == 0 {
|
|
if next := w.Next(); next != nil {
|
|
t.Fatalf("w.Next returns non nil value:%v when there is no item", next)
|
|
}
|
|
return
|
|
}
|
|
|
|
var sumOfWeights int64
|
|
for i, weight := range tt.weights {
|
|
w.Add(i, weight)
|
|
sumOfWeights += weight
|
|
}
|
|
|
|
results := make(map[int]int)
|
|
for i := 0; i < iterCount; i++ {
|
|
results[w.Next().(int)]++
|
|
}
|
|
|
|
wantRatio := make([]float64, len(tt.weights))
|
|
for i, weight := range tt.weights {
|
|
wantRatio[i] = float64(weight) / float64(sumOfWeights)
|
|
}
|
|
gotRatio := make([]float64, len(tt.weights))
|
|
for i, count := range results {
|
|
gotRatio[i] = float64(count) / iterCount
|
|
}
|
|
|
|
for i := range wantRatio {
|
|
if err := equalApproximate(gotRatio[i], wantRatio[i]); err != nil {
|
|
t.Errorf("%v not equal %v", i, err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func (s) TestRandomWRRNext(t *testing.T) {
|
|
testWRRNext(t, NewRandom)
|
|
}
|
|
|
|
func (s) TestEdfWrrNext(t *testing.T) {
|
|
testWRRNext(t, NewEDF)
|
|
}
|
|
|
|
func BenchmarkRandomWRRNext(b *testing.B) {
|
|
for _, n := range []int{100, 500, 1000} {
|
|
b.Run("equal-weights-"+strconv.Itoa(n)+"-items", func(b *testing.B) {
|
|
w := NewRandom()
|
|
sumOfWeights := n
|
|
for i := 0; i < n; i++ {
|
|
w.Add(i, 1)
|
|
}
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
for i := 0; i < sumOfWeights; i++ {
|
|
w.Next()
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
var maxWeight int64 = 1024
|
|
for _, n := range []int{100, 500, 1000} {
|
|
b.Run("random-weights-"+strconv.Itoa(n)+"-items", func(b *testing.B) {
|
|
w := NewRandom()
|
|
var sumOfWeights int64
|
|
for i := 0; i < n; i++ {
|
|
weight := rand.Int63n(maxWeight + 1)
|
|
w.Add(i, weight)
|
|
sumOfWeights += weight
|
|
}
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
for i := 0; i < int(sumOfWeights); i++ {
|
|
w.Next()
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
itemsNum := 200
|
|
heavyWeight := int64(itemsNum)
|
|
lightWeight := int64(1)
|
|
heavyIndices := []int{0, itemsNum / 2, itemsNum - 1}
|
|
for _, heavyIndex := range heavyIndices {
|
|
b.Run("skew-weights-heavy-index-"+strconv.Itoa(heavyIndex), func(b *testing.B) {
|
|
w := NewRandom()
|
|
var sumOfWeights int64
|
|
for i := 0; i < itemsNum; i++ {
|
|
var weight int64
|
|
if i == heavyIndex {
|
|
weight = heavyWeight
|
|
} else {
|
|
weight = lightWeight
|
|
}
|
|
sumOfWeights += weight
|
|
w.Add(i, weight)
|
|
}
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
for i := 0; i < int(sumOfWeights); i++ {
|
|
w.Next()
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func init() {
|
|
r := rand.New(rand.NewSource(0))
|
|
grpcrandInt63n = r.Int63n
|
|
}
|