Fix broken FIN Handshake article page (#962)

This commit is contained in:
Hüseyin BABAL 2022-04-07 23:26:47 +03:00 committed by GitHub
parent ba84d86a03
commit 0b37b1124c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 1 additions and 1 deletions

View File

@ -50,7 +50,7 @@ Once resolution is finished, the load balancer is informed of the new addresses.
The effectiveness of gRPC's connection management hinges upon its ability to identify failed connections. There are generally two types of connection failures: clean failures, in which the failure is communicated, and the less-clean failure, in which the failure is not communicated.
Lets consider a clean, easy-to-observe failure. Clean failures can occur when an endpoint intentionally kills the connection. For example, the endpoint may have gracefully shut down, or a timer may have been exceeded, prompting the endpoint to close the connection. When connections close cleanly, TCP semantics suffice: closing a connection causes the [FIN handshake](https://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm) to occur. This ends the HTTP/2 connection, which ends the gRPC connection. gRPC will immediately begin reconnecting (as described above). This is quite clean and requires no additional HTTP/2 or gRPC semantics.
Lets consider a clean, easy-to-observe failure. Clean failures can occur when an endpoint intentionally kills the connection. For example, the endpoint may have gracefully shut down, or a timer may have been exceeded, prompting the endpoint to close the connection. When connections close cleanly, TCP semantics suffice: closing a connection causes the [FIN handshake](http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm) to occur. This ends the HTTP/2 connection, which ends the gRPC connection. gRPC will immediately begin reconnecting (as described above). This is quite clean and requires no additional HTTP/2 or gRPC semantics.
The less clean version is where the endpoint dies or hangs without informing the client. In this case, TCP might undergo retry for as long as 10 minutes before the connection is considered failed. Of course, failing to recognize that the connection is dead for 10 minutes is unacceptable. gRPC solves this problem using HTTP/2 semantics: when configured using KeepAlive, gRPC will periodically send [HTTP/2 PING frames](https://http2.github.io/http2-spec/#PING). These frames bypass flow control and are used to establish whether the connection is alive. If a PING response does not return within a timely fashion, gRPC will consider the connection failed, close the connection, and begin reconnecting (as described above).