e2e: Add e2e for CronFederatedHPA

Signed-off-by: jwcesign <jiangwei115@huawei.com>
This commit is contained in:
jwcesign 2023-07-13 20:17:05 +08:00 committed by jwcesign
parent 2a314eb46e
commit 7ac69c1864
8 changed files with 437 additions and 1 deletions

View File

@ -231,6 +231,9 @@ util::wait_pod_ready "${HOST_CLUSTER_NAME}" "${KARMADA_AGGREGATION_APISERVER_LAB
# deploy karmada-search on host cluster
kubectl --context="${HOST_CLUSTER_NAME}" apply -f "${REPO_ROOT}/artifacts/deploy/karmada-search.yaml"
util::wait_pod_ready "${HOST_CLUSTER_NAME}" "${KARMADA_SEARCH_LABEL}" "${KARMADA_SYSTEM_NAMESPACE}"
# deploy karmada-metrics-adapter on host cluster
kubectl --context="${HOST_CLUSTER_NAME}" apply -f "${REPO_ROOT}/artifacts/deploy/karmada-metrics-adapter.yaml"
util::wait_pod_ready "${HOST_CLUSTER_NAME}" "${KARMADA_METRICS_ADAPTER_LABEL}" "${KARMADA_SYSTEM_NAMESPACE}"
# install CRD APIs on karmada apiserver.
if ! kubectl config get-contexts "karmada-apiserver" > /dev/null 2>&1;
@ -260,6 +263,11 @@ kubectl --context="karmada-apiserver" apply -f "${REPO_ROOT}/artifacts/deploy/ka
# make sure apiservice for v1alpha1.search.karmada.io is Available
util::wait_apiservice_ready "karmada-apiserver" "${KARMADA_SEARCH_LABEL}"
# deploy APIService on karmada apiserver for karmada-metrics-adapter
kubectl --context="karmada-apiserver" apply -f "${REPO_ROOT}/artifacts/deploy/karmada-metrics-adapter-apiservice.yaml"
# make sure apiservice for karmada metrics adapter is Available
util::wait_apiservice_ready "karmada-apiserver" "${KARMADA_METRICS_ADAPTER_LABEL}"
# deploy cluster proxy rbac for admin
kubectl --context="karmada-apiserver" apply -f "${REPO_ROOT}/artifacts/deploy/cluster-proxy-admin-rbac.yaml"

View File

@ -135,6 +135,7 @@ kind load docker-image "${REGISTRY}/karmada-webhook:${VERSION}" --name="${HOST_C
kind load docker-image "${REGISTRY}/karmada-scheduler-estimator:${VERSION}" --name="${HOST_CLUSTER_NAME}"
kind load docker-image "${REGISTRY}/karmada-aggregated-apiserver:${VERSION}" --name="${HOST_CLUSTER_NAME}"
kind load docker-image "${REGISTRY}/karmada-search:${VERSION}" --name="${HOST_CLUSTER_NAME}"
kind load docker-image "${REGISTRY}/karmada-metrics-adapter:${VERSION}" --name="${HOST_CLUSTER_NAME}"
#step5. install karmada control plane components
"${REPO_ROOT}"/hack/deploy-karmada.sh "${MAIN_KUBECONFIG}" "${HOST_CLUSTER_NAME}"
@ -169,12 +170,17 @@ kind load docker-image "${REGISTRY}/karmada-agent:${VERSION}" --name="${PULL_MOD
#step7. deploy karmada agent in pull mode member clusters
"${REPO_ROOT}"/hack/deploy-agent-and-estimator.sh "${MAIN_KUBECONFIG}" "${HOST_CLUSTER_NAME}" "${MAIN_KUBECONFIG}" "${KARMADA_APISERVER_CLUSTER_NAME}" "${PULL_MODE_CLUSTER_TMP_CONFIG}" "${PULL_MODE_CLUSTER_NAME}"
#step8. deploy metrics adapter in member clusters
"${REPO_ROOT}"/hack/deploy-k8s-metrics-server.sh "${MEMBER_CLUSTER_1_TMP_CONFIG}" "${MEMBER_CLUSTER_1_NAME}"
"${REPO_ROOT}"/hack/deploy-k8s-metrics-server.sh "${MEMBER_CLUSTER_2_TMP_CONFIG}" "${MEMBER_CLUSTER_2_NAME}"
"${REPO_ROOT}"/hack/deploy-k8s-metrics-server.sh "${PULL_MODE_CLUSTER_TMP_CONFIG}" "${PULL_MODE_CLUSTER_NAME}"
# wait all of clusters member1, member2 and member3 status is ready
util:wait_cluster_ready "${KARMADA_APISERVER_CLUSTER_NAME}" "${MEMBER_CLUSTER_1_NAME}"
util:wait_cluster_ready "${KARMADA_APISERVER_CLUSTER_NAME}" "${MEMBER_CLUSTER_2_NAME}"
util:wait_cluster_ready "${KARMADA_APISERVER_CLUSTER_NAME}" "${PULL_MODE_CLUSTER_NAME}"
#step8. merge temporary kubeconfig of member clusters by kubectl
#step9. merge temporary kubeconfig of member clusters by kubectl
export KUBECONFIG=$(find ${KUBECONFIG_PATH} -maxdepth 1 -type f | grep ${MEMBER_TMP_CONFIG_PREFIX} | tr '\n' ':')
kubectl config view --flatten > ${MEMBER_CLUSTER_KUBECONFIG}
rm $(find ${KUBECONFIG_PATH} -maxdepth 1 -type f | grep ${MEMBER_TMP_CONFIG_PREFIX})

View File

@ -0,0 +1,199 @@
/*
Copyright 2023 The Karmada Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package e2e
import (
"time"
"github.com/onsi/ginkgo/v2"
appsv1 "k8s.io/api/apps/v1"
"k8s.io/apimachinery/pkg/util/rand"
"k8s.io/utils/pointer"
autoscalingv1alpha1 "github.com/karmada-io/karmada/pkg/apis/autoscaling/v1alpha1"
policyv1alpha1 "github.com/karmada-io/karmada/pkg/apis/policy/v1alpha1"
"github.com/karmada-io/karmada/test/e2e/framework"
"github.com/karmada-io/karmada/test/helper"
)
/*
CronFederatedHPA focus on scaling FederatedHPA or other resource with scale subresource (e.g. Deployment, StatefulSet).
Test Case Overview:
case 1:
Scale FederatedHPA.
case 2:
Scale deployment.
case 3:
Test suspend rule in CronFederatedHPA
case 4:
Test unsuspend rule then suspend it in CronFederatedHPA
*/
var _ = ginkgo.Describe("[CronFederatedHPA] CronFederatedHPA testing", func() {
var cronFHPAName, fhpaName, policyName, deploymentName string
var cronFHPA *autoscalingv1alpha1.CronFederatedHPA
var fhpa *autoscalingv1alpha1.FederatedHPA
var deployment *appsv1.Deployment
var policy *policyv1alpha1.PropagationPolicy
ginkgo.BeforeEach(func() {
cronFHPAName = cronFedratedHPANamePrefix + rand.String(RandomStrLength)
fhpaName = federatedHPANamePrefix + rand.String(RandomStrLength)
policyName = deploymentNamePrefix + rand.String(RandomStrLength)
deploymentName = policyName
deployment = helper.NewDeployment(testNamespace, deploymentName)
policy = helper.NewPropagationPolicy(testNamespace, policyName, []policyv1alpha1.ResourceSelector{
{
APIVersion: deployment.APIVersion,
Kind: deployment.Kind,
Name: deploymentName,
},
}, policyv1alpha1.Placement{
ClusterAffinity: &policyv1alpha1.ClusterAffinity{
ClusterNames: framework.ClusterNames(),
},
ReplicaScheduling: &policyv1alpha1.ReplicaSchedulingStrategy{
ReplicaSchedulingType: policyv1alpha1.ReplicaSchedulingTypeDivided,
ReplicaDivisionPreference: policyv1alpha1.ReplicaDivisionPreferenceAggregated,
},
})
})
ginkgo.JustBeforeEach(func() {
framework.CreatePropagationPolicy(karmadaClient, policy)
framework.CreateDeployment(kubeClient, deployment)
ginkgo.DeferCleanup(func() {
framework.RemoveDeployment(kubeClient, deployment.Namespace, deployment.Name)
framework.RemovePropagationPolicy(karmadaClient, policy.Namespace, policy.Name)
})
})
// case 1: Scale FederatedHPA.
ginkgo.Context("Scale FederatedHPA", func() {
targetMinReplicas := pointer.Int32(2)
targetMaxReplicas := pointer.Int32(100)
ginkgo.BeforeEach(func() {
// */1 * * * * means the rule will be triggered every 1 minute
rule := helper.NewCronFederatedHPARule("scale-up", "*/1 * * * *", false, nil, targetMinReplicas, targetMaxReplicas)
fhpa = helper.NewFederatedHPA(testNamespace, fhpaName, deploymentName)
cronFHPA = helper.NewCronFederatedHPAWithScalingFHPA(testNamespace, cronFHPAName, fhpaName, rule)
framework.CreateFederatedHPA(karmadaClient, fhpa)
})
ginkgo.AfterEach(func() {
framework.RemoveFederatedHPA(karmadaClient, testNamespace, fhpaName)
framework.RemoveCronFederatedHPA(karmadaClient, testNamespace, cronFHPAName)
})
ginkgo.It("Scale FederatedHPA testing", func() {
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*fhpa.Spec.MinReplicas))
// Create CronFederatedHPA to scale FederatedHPA
framework.CreateCronFederatedHPA(karmadaClient, cronFHPA)
// Wait CronFederatedHPA to scale FederatedHPA's minReplicas which will trigger scaling deployment's replicas to minReplicas
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*targetMinReplicas))
})
})
// case 2. Scale deployment.
ginkgo.Context("Scale Deployment", func() {
targetReplicas := pointer.Int32(4)
ginkgo.BeforeEach(func() {
// */1 * * * * means the rule will be executed every 1 minute
rule := helper.NewCronFederatedHPARule("scale-up", "*/1 * * * *", false, targetReplicas, nil, nil)
cronFHPA = helper.NewCronFederatedHPAWithScalingDeployment(testNamespace, cronFHPAName, deploymentName, rule)
})
ginkgo.AfterEach(func() {
framework.RemoveCronFederatedHPA(karmadaClient, testNamespace, cronFHPAName)
})
ginkgo.It("Scale Deployment testing", func() {
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*deployment.Spec.Replicas))
// Create CronFederatedHPA to scale Deployment
framework.CreateCronFederatedHPA(karmadaClient, cronFHPA)
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*targetReplicas))
})
})
// case 3. Test suspend rule in CronFederatedHPA
ginkgo.Context("Test suspend rule in CronFederatedHPA", func() {
ginkgo.BeforeEach(func() {
// */1 * * * * means the rule will be executed every 1 minute
rule := helper.NewCronFederatedHPARule("scale-up", "*/1 * * * *", true, pointer.Int32(30), nil, nil)
cronFHPA = helper.NewCronFederatedHPAWithScalingDeployment(testNamespace, cronFHPAName, deploymentName, rule)
})
ginkgo.AfterEach(func() {
framework.RemoveCronFederatedHPA(karmadaClient, testNamespace, cronFHPAName)
})
ginkgo.It("Test suspend rule with CronFederatedHPA", func() {
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*deployment.Spec.Replicas))
// Create CronFederatedHPA to scale Deployment
framework.CreateCronFederatedHPA(karmadaClient, cronFHPA)
// */1 * * * * means the rule will be triggered every 1 minute
// So wait for 1m30s and check whether the replicas changed and whether the suspend field works
time.Sleep(time.Minute*1 + time.Second*30)
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*deployment.Spec.Replicas))
})
})
// case 4. Test unsuspend rule then suspend it in CronFederatedHPA
ginkgo.Context("Test unsuspend rule then suspend it in CronFederatedHPA", func() {
rule := autoscalingv1alpha1.CronFederatedHPARule{}
targetReplicas := pointer.Int32(4)
ginkgo.BeforeEach(func() {
// */1 * * * * means the rule will be executed every 1 minute
rule = helper.NewCronFederatedHPARule("scale-up", "*/1 * * * *", false, targetReplicas, nil, nil)
cronFHPA = helper.NewCronFederatedHPAWithScalingDeployment(testNamespace, cronFHPAName, deploymentName, rule)
})
ginkgo.AfterEach(func() {
framework.RemoveCronFederatedHPA(karmadaClient, testNamespace, cronFHPAName)
})
ginkgo.It("Test unsuspend rule then suspend it in CronFederatedHPA", func() {
// Step 1.Check the init replicas, which should be 3(deployment.Spec.Replicas)
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*deployment.Spec.Replicas))
// Step 2.Create CronFederatedHPA to scale Deployment
framework.CreateCronFederatedHPA(karmadaClient, cronFHPA)
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*targetReplicas))
// Step 3.Update replicas to 3(deployment.Spec.Replicas)
framework.UpdateDeploymentReplicas(kubeClient, deployment, *deployment.Spec.Replicas)
// Step 4. Suspend rule
rule.Suspend = pointer.Bool(true)
framework.UpdateCronFederatedHPAWithRule(karmadaClient, testNamespace, cronFHPAName, []autoscalingv1alpha1.CronFederatedHPARule{rule})
// Step 5. Check the replicas, which should not be changed
// */1 * * * * means the rule will be triggered every 1 minute
// So wait for 1m30s and check whether the replicas changed and whether the suspend field works
time.Sleep(time.Minute*1 + time.Second*30)
framework.WaitDeploymentReplicasFitWith(framework.ClusterNames(), testNamespace, deploymentName, int(*deployment.Spec.Replicas))
})
})
})

View File

@ -0,0 +1,54 @@
/*
Copyright 2023 The Karmada Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package framework
import (
"context"
"fmt"
"github.com/onsi/ginkgo/v2"
"github.com/onsi/gomega"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
autoscalingv1alpha1 "github.com/karmada-io/karmada/pkg/apis/autoscaling/v1alpha1"
karmada "github.com/karmada-io/karmada/pkg/generated/clientset/versioned"
)
// CreateCronFederatedHPA create CronFederatedHPA with karmada client.
func CreateCronFederatedHPA(client karmada.Interface, fhpa *autoscalingv1alpha1.CronFederatedHPA) {
ginkgo.By(fmt.Sprintf("Create FederatedHPA(%s/%s)", fhpa.Namespace, fhpa.Name), func() {
_, err := client.AutoscalingV1alpha1().CronFederatedHPAs(fhpa.Namespace).Create(context.TODO(), fhpa, metav1.CreateOptions{})
gomega.Expect(err).ShouldNot(gomega.HaveOccurred())
})
}
// RemoveCronFederatedHPA delete CronFederatedHPA with karmada client.
func RemoveCronFederatedHPA(client karmada.Interface, namespace, name string) {
ginkgo.By(fmt.Sprintf("Remove FederatedHPA(%s/%s)", namespace, name), func() {
err := client.AutoscalingV1alpha1().CronFederatedHPAs(namespace).Delete(context.TODO(), name, metav1.DeleteOptions{})
gomega.Expect(err).ShouldNot(gomega.HaveOccurred())
})
}
// UpdateCronFederatedHPAWithRule update CronFederatedHPA with karmada client.
func UpdateCronFederatedHPAWithRule(client karmada.Interface, namespace, name string, rule []autoscalingv1alpha1.CronFederatedHPARule) {
ginkgo.By(fmt.Sprintf("Updating CronFederatedHPA(%s/%s)", namespace, name), func() {
newCronFederatedHPA, err := client.AutoscalingV1alpha1().CronFederatedHPAs(namespace).Get(context.TODO(), name, metav1.GetOptions{})
gomega.Expect(err).ShouldNot(gomega.HaveOccurred())
newCronFederatedHPA.Spec.Rules = rule
_, err = client.AutoscalingV1alpha1().CronFederatedHPAs(namespace).Update(context.TODO(), newCronFederatedHPA, metav1.UpdateOptions{})
gomega.Expect(err).ShouldNot(gomega.HaveOccurred())
})
}

View File

@ -223,3 +223,25 @@ func WaitDeploymentGetByClientFitWith(client kubernetes.Interface, namespace, na
}, pollTimeout, pollInterval).Should(gomega.Equal(true))
})
}
func WaitDeploymentReplicasFitWith(clusters []string, namespace, name string, expectReplicas int) {
ginkgo.By(fmt.Sprintf("Check deployment(%s/%s) replicas fit with expecting", namespace, name), func() {
gomega.Eventually(func() bool {
totalReplicas := 0
for _, cluster := range clusters {
clusterClient := GetClusterClient(cluster)
if clusterClient == nil {
continue
}
dep, err := clusterClient.AppsV1().Deployments(namespace).Get(context.TODO(), name, metav1.GetOptions{})
if err != nil {
continue
}
totalReplicas += int(*dep.Spec.Replicas)
}
klog.Infof("The total replicas of deployment(%s/%s) is %d", namespace, name, totalReplicas)
return totalReplicas == expectReplicas
}, pollTimeout, pollInterval).Should(gomega.Equal(true))
})
}

View File

@ -0,0 +1,42 @@
/*
Copyright 2023 The Karmada Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package framework
import (
"context"
"fmt"
"github.com/onsi/ginkgo/v2"
"github.com/onsi/gomega"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
autoscalingv1alpha1 "github.com/karmada-io/karmada/pkg/apis/autoscaling/v1alpha1"
karmada "github.com/karmada-io/karmada/pkg/generated/clientset/versioned"
)
// CreateFederatedHPA create FederatedHPA with karmada client.
func CreateFederatedHPA(client karmada.Interface, fhpa *autoscalingv1alpha1.FederatedHPA) {
ginkgo.By(fmt.Sprintf("Create FederatedHPA(%s/%s)", fhpa.Namespace, fhpa.Name), func() {
_, err := client.AutoscalingV1alpha1().FederatedHPAs(fhpa.Namespace).Create(context.TODO(), fhpa, metav1.CreateOptions{})
gomega.Expect(err).ShouldNot(gomega.HaveOccurred())
})
}
// RemoveFederatedHPA delete FederatedHPA with karmada client.
func RemoveFederatedHPA(client karmada.Interface, namespace, name string) {
ginkgo.By(fmt.Sprintf("Remove FederatedHPA(%s/%s)", namespace, name), func() {
err := client.AutoscalingV1alpha1().FederatedHPAs(namespace).Delete(context.TODO(), name, metav1.DeleteOptions{})
gomega.Expect(err).ShouldNot(gomega.HaveOccurred())
})
}

View File

@ -56,6 +56,8 @@ const (
roleBindingNamePrefix = "rolebinding-"
clusterRoleBindingNamePrefix = "clusterrolebinding-"
podDisruptionBudgetNamePrefix = "poddisruptionbudget-"
federatedHPANamePrefix = "fhpa-"
cronFedratedHPANamePrefix = "cronfhpa-"
updateDeploymentReplicas = 2
updateStatefulSetReplicas = 2

View File

@ -4,6 +4,7 @@ import (
"fmt"
appsv1 "k8s.io/api/apps/v1"
autoscalingv2 "k8s.io/api/autoscaling/v2"
batchv1 "k8s.io/api/batch/v1"
corev1 "k8s.io/api/core/v1"
networkingv1 "k8s.io/api/networking/v1"
@ -18,6 +19,7 @@ import (
"k8s.io/utils/pointer"
workloadv1alpha1 "github.com/karmada-io/karmada/examples/customresourceinterpreter/apis/workload/v1alpha1"
autoscalingv1alpha1 "github.com/karmada-io/karmada/pkg/apis/autoscaling/v1alpha1"
clusterv1alpha1 "github.com/karmada-io/karmada/pkg/apis/cluster/v1alpha1"
)
@ -31,6 +33,104 @@ const (
ResourceUnitGPU int64 = 1
)
// NewCronFederatedHPAWithScalingDeployment will build a CronFederatedHPA object with scaling deployment.
func NewCronFederatedHPAWithScalingDeployment(namespace, name, deploymentName string,
rule autoscalingv1alpha1.CronFederatedHPARule) *autoscalingv1alpha1.CronFederatedHPA {
return &autoscalingv1alpha1.CronFederatedHPA{
TypeMeta: metav1.TypeMeta{
APIVersion: "autoscaling.karmada.io/v1alpha1",
Kind: "CronFederatedHPA",
},
ObjectMeta: metav1.ObjectMeta{
Namespace: namespace,
Name: name,
},
Spec: autoscalingv1alpha1.CronFederatedHPASpec{
ScaleTargetRef: autoscalingv2.CrossVersionObjectReference{
APIVersion: "apps/v1",
Kind: "Deployment",
Name: deploymentName,
},
Rules: []autoscalingv1alpha1.CronFederatedHPARule{rule},
},
}
}
// NewCronFederatedHPAWithScalingFHPA will build a CronFederatedHPA object with scaling FederatedHPA.
func NewCronFederatedHPAWithScalingFHPA(namespace, name, fhpaName string,
rule autoscalingv1alpha1.CronFederatedHPARule) *autoscalingv1alpha1.CronFederatedHPA {
return &autoscalingv1alpha1.CronFederatedHPA{
TypeMeta: metav1.TypeMeta{
APIVersion: "autoscaling.karmada.io/v1alpha1",
Kind: "CronFederatedHPA",
},
ObjectMeta: metav1.ObjectMeta{
Namespace: namespace,
Name: name,
},
Spec: autoscalingv1alpha1.CronFederatedHPASpec{
ScaleTargetRef: autoscalingv2.CrossVersionObjectReference{
APIVersion: "autoscaling.karmada.io/v1alpha1",
Kind: "FederatedHPA",
Name: fhpaName,
},
Rules: []autoscalingv1alpha1.CronFederatedHPARule{rule},
},
}
}
// NewCronFederatedHPARule will build a CronFederatedHPARule object.
func NewCronFederatedHPARule(name, cron string, suspend bool, targetReplicas, targetMinReplicas, targetMaxReplicas *int32) autoscalingv1alpha1.CronFederatedHPARule {
return autoscalingv1alpha1.CronFederatedHPARule{
Name: name,
Schedule: cron,
TargetReplicas: targetReplicas,
TargetMinReplicas: targetMinReplicas,
TargetMaxReplicas: targetMaxReplicas,
Suspend: pointer.Bool(suspend),
}
}
// NewFederatedHPA will build a FederatedHPA object.
func NewFederatedHPA(namespace, name, scaleTargetDeployment string) *autoscalingv1alpha1.FederatedHPA {
return &autoscalingv1alpha1.FederatedHPA{
TypeMeta: metav1.TypeMeta{
APIVersion: "autoscaling.karmada.io/v1alpha1",
Kind: "FederatedHPA",
},
ObjectMeta: metav1.ObjectMeta{
Namespace: namespace,
Name: name,
},
Spec: autoscalingv1alpha1.FederatedHPASpec{
ScaleTargetRef: autoscalingv2.CrossVersionObjectReference{
APIVersion: "apps/v1",
Kind: "Deployment",
Name: scaleTargetDeployment,
},
Behavior: &autoscalingv2.HorizontalPodAutoscalerBehavior{
ScaleDown: &autoscalingv2.HPAScalingRules{
StabilizationWindowSeconds: pointer.Int32(10),
},
},
MinReplicas: pointer.Int32(1),
MaxReplicas: 1,
Metrics: []autoscalingv2.MetricSpec{
{
Type: autoscalingv2.ResourceMetricSourceType,
Resource: &autoscalingv2.ResourceMetricSource{
Name: corev1.ResourceCPU,
Target: autoscalingv2.MetricTarget{
Type: autoscalingv2.UtilizationMetricType,
AverageUtilization: pointer.Int32(80),
},
},
},
},
},
}
}
// NewDeployment will build a deployment object.
func NewDeployment(namespace string, name string) *appsv1.Deployment {
podLabels := map[string]string{"app": "nginx"}
@ -58,6 +158,9 @@ func NewDeployment(namespace string, name string) *appsv1.Deployment {
Name: "nginx",
Image: "nginx:1.19.0",
Resources: corev1.ResourceRequirements{
Requests: map[corev1.ResourceName]resource.Quantity{
corev1.ResourceCPU: resource.MustParse("10m"),
},
Limits: map[corev1.ResourceName]resource.Quantity{
corev1.ResourceCPU: resource.MustParse("100m"),
},