package core import ( "fmt" "sort" "k8s.io/apimachinery/pkg/util/sets" clusterv1alpha1 "github.com/karmada-io/karmada/pkg/apis/cluster/v1alpha1" policyv1alpha1 "github.com/karmada-io/karmada/pkg/apis/policy/v1alpha1" workv1alpha2 "github.com/karmada-io/karmada/pkg/apis/work/v1alpha2" "github.com/karmada-io/karmada/pkg/util" "github.com/karmada-io/karmada/pkg/util/helper" ) // TargetClustersList is a slice of TargetCluster that implements sort.Interface to sort by Value. type TargetClustersList []workv1alpha2.TargetCluster func (a TargetClustersList) Len() int { return len(a) } func (a TargetClustersList) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a TargetClustersList) Less(i, j int) bool { return a[i].Replicas > a[j].Replicas } // divideReplicasByDynamicWeight assigns a total number of replicas to the selected clusters by the dynamic weight list. func divideReplicasByDynamicWeight(clusters []*clusterv1alpha1.Cluster, dynamicWeight policyv1alpha1.DynamicWeightFactor, spec *workv1alpha2.ResourceBindingSpec) ([]workv1alpha2.TargetCluster, error) { switch dynamicWeight { case policyv1alpha1.DynamicWeightByAvailableReplicas: return divideReplicasByResource(clusters, spec, policyv1alpha1.ReplicaDivisionPreferenceWeighted) default: return nil, fmt.Errorf("undefined replica dynamic weight factor: %s", dynamicWeight) } } func divideReplicasByResource( clusters []*clusterv1alpha1.Cluster, spec *workv1alpha2.ResourceBindingSpec, preference policyv1alpha1.ReplicaDivisionPreference, ) ([]workv1alpha2.TargetCluster, error) { // Step 1: Find the ready clusters that have old replicas scheduledClusters := findOutScheduledCluster(spec.Clusters, clusters) // Step 2: calculate the assigned Replicas in scheduledClusters assignedReplicas := util.GetSumOfReplicas(scheduledClusters) // Step 3: Check the scale type (up or down). if assignedReplicas > spec.Replicas { // We need to reduce the replicas in terms of the previous result. newTargetClusters, err := scaleDownScheduleByReplicaDivisionPreference(spec, preference) if err != nil { return nil, fmt.Errorf("failed to scale down: %v", err) } return newTargetClusters, nil } else if assignedReplicas < spec.Replicas { // We need to enlarge the replicas in terms of the previous result (if exists). // First scheduling is considered as a special kind of scaling up. newTargetClusters, err := scaleUpScheduleByReplicaDivisionPreference(clusters, spec, preference, scheduledClusters, assignedReplicas) if err != nil { return nil, fmt.Errorf("failed to scaleUp: %v", err) } return newTargetClusters, nil } else { return scheduledClusters, nil } } // divideReplicasByStaticWeight assigns a total number of replicas to the selected clusters by the weight list. // For example, we want to assign replicas to two clusters named A and B. // | Total | Weight(A:B) | Assignment(A:B) | // | 9 | 1:2 | 3:6 | // | 9 | 1:3 | 2:7 | Approximate assignment // Note: // 1. If any selected cluster which not present on the weight list will be ignored(different with '0' replica). // 2. In case of not enough replica for specific cluster which will get '0' replica. func divideReplicasByStaticWeight(clusters []*clusterv1alpha1.Cluster, weightList []policyv1alpha1.StaticClusterWeight, replicas int32) ([]workv1alpha2.TargetCluster, error) { weightSum := int64(0) matchClusters := make(map[string]int64) desireReplicaInfos := make(map[string]int64) for _, cluster := range clusters { for _, staticWeightRule := range weightList { if util.ClusterMatches(cluster, staticWeightRule.TargetCluster) { weightSum += staticWeightRule.Weight matchClusters[cluster.Name] = staticWeightRule.Weight break } } } if weightSum == 0 { for _, cluster := range clusters { weightSum++ matchClusters[cluster.Name] = 1 } } allocatedReplicas := int32(0) for clusterName, weight := range matchClusters { desireReplicaInfos[clusterName] = weight * int64(replicas) / weightSum allocatedReplicas += int32(desireReplicaInfos[clusterName]) } clusterWeights := helper.SortClusterByWeight(matchClusters) var clusterNames []string for _, clusterWeightInfo := range clusterWeights { clusterNames = append(clusterNames, clusterWeightInfo.ClusterName) } divideRemainingReplicas(int(replicas-allocatedReplicas), desireReplicaInfos, clusterNames) targetClusters := make([]workv1alpha2.TargetCluster, len(desireReplicaInfos)) i := 0 for key, value := range desireReplicaInfos { targetClusters[i] = workv1alpha2.TargetCluster{Name: key, Replicas: int32(value)} i++ } return targetClusters, nil } // divideReplicasByPreference assigns a total number of replicas to the selected clusters by preference according to the resource. func divideReplicasByPreference( clusterAvailableReplicas []workv1alpha2.TargetCluster, replicas int32, preference policyv1alpha1.ReplicaDivisionPreference, scheduledClusterNames sets.String, ) ([]workv1alpha2.TargetCluster, error) { clustersMaxReplicas := util.GetSumOfReplicas(clusterAvailableReplicas) if clustersMaxReplicas < replicas { return nil, fmt.Errorf("clusters resources are not enough to schedule, max %d replicas are support", clustersMaxReplicas) } switch preference { case policyv1alpha1.ReplicaDivisionPreferenceAggregated: return divideReplicasByAggregation(clusterAvailableReplicas, replicas, scheduledClusterNames), nil case policyv1alpha1.ReplicaDivisionPreferenceWeighted: return divideReplicasByAvailableReplica(clusterAvailableReplicas, replicas, clustersMaxReplicas), nil default: return nil, fmt.Errorf("undefined replicaSchedulingType: %v", preference) } } func divideReplicasByAggregation(clusterAvailableReplicas []workv1alpha2.TargetCluster, replicas int32, scheduledClusterNames sets.String) []workv1alpha2.TargetCluster { clusterAvailableReplicas = resortClusterList(clusterAvailableReplicas, scheduledClusterNames) clustersNum, clustersMaxReplicas := 0, int32(0) for _, clusterInfo := range clusterAvailableReplicas { clustersNum++ clustersMaxReplicas += clusterInfo.Replicas if clustersMaxReplicas >= replicas { break } } return divideReplicasByAvailableReplica(clusterAvailableReplicas[0:clustersNum], replicas, clustersMaxReplicas) } func divideReplicasByAvailableReplica(clusterAvailableReplicas []workv1alpha2.TargetCluster, replicas int32, clustersMaxReplicas int32) []workv1alpha2.TargetCluster { desireReplicaInfos := make(map[string]int64) allocatedReplicas := int32(0) for _, clusterInfo := range clusterAvailableReplicas { desireReplicaInfos[clusterInfo.Name] = int64(clusterInfo.Replicas * replicas / clustersMaxReplicas) allocatedReplicas += int32(desireReplicaInfos[clusterInfo.Name]) } var clusterNames []string for _, targetCluster := range clusterAvailableReplicas { clusterNames = append(clusterNames, targetCluster.Name) } divideRemainingReplicas(int(replicas-allocatedReplicas), desireReplicaInfos, clusterNames) targetClusters := make([]workv1alpha2.TargetCluster, len(desireReplicaInfos)) i := 0 for key, value := range desireReplicaInfos { targetClusters[i] = workv1alpha2.TargetCluster{Name: key, Replicas: int32(value)} i++ } return targetClusters } // divideRemainingReplicas divide remaining Replicas to clusters and calculate desiredReplicaInfos func divideRemainingReplicas(remainingReplicas int, desiredReplicaInfos map[string]int64, clusterNames []string) { if remainingReplicas <= 0 { return } clusterSize := len(clusterNames) if remainingReplicas < clusterSize { for i := 0; i < remainingReplicas; i++ { desiredReplicaInfos[clusterNames[i]]++ } } else { avg, residue := remainingReplicas/clusterSize, remainingReplicas%clusterSize for i := 0; i < clusterSize; i++ { if i < residue { desiredReplicaInfos[clusterNames[i]] += int64(avg) + 1 } else { desiredReplicaInfos[clusterNames[i]] += int64(avg) } } } } func scaleDownScheduleByReplicaDivisionPreference( spec *workv1alpha2.ResourceBindingSpec, preference policyv1alpha1.ReplicaDivisionPreference, ) ([]workv1alpha2.TargetCluster, error) { // The previous scheduling result will be the weight reference of scaling down. // In other words, we scale down the replicas proportionally by their scheduled replicas. return divideReplicasByPreference(spec.Clusters, spec.Replicas, preference, sets.NewString()) } func scaleUpScheduleByReplicaDivisionPreference( clusters []*clusterv1alpha1.Cluster, spec *workv1alpha2.ResourceBindingSpec, preference policyv1alpha1.ReplicaDivisionPreference, scheduledClusters []workv1alpha2.TargetCluster, assignedReplicas int32, ) ([]workv1alpha2.TargetCluster, error) { // Step 1: Get how many replicas should be scheduled in this cycle and construct a new object if necessary newSpec := spec if assignedReplicas > 0 { newSpec = spec.DeepCopy() newSpec.Replicas = spec.Replicas - assignedReplicas } // Step 2: Calculate available replicas of all candidates clusterAvailableReplicas := calAvailableReplicas(clusters, newSpec) sort.Sort(TargetClustersList(clusterAvailableReplicas)) // Step 3: Begin dividing. // Only the new replicas are considered during this scheduler, the old replicas will not be moved. // If not, the old replicas may be recreated which is not expected during scaling up. // The parameter `scheduledClusterNames` is used to make sure that we assign new replicas to them preferentially // so that all the replicas are aggregated. result, err := divideReplicasByPreference(clusterAvailableReplicas, newSpec.Replicas, preference, util.ConvertToClusterNames(scheduledClusters)) if err != nil { return result, err } // Step 4: Merge the result of previous and new results. return util.MergeTargetClusters(scheduledClusters, result), nil }