# Profiling Karmada ## Enable profiling To profile Karmada components running inside a Kubernetes pod, set --enable-pprof flag to true in the yaml of Karmada components. The default profiling address is 127.0.0.1:6060, and it can be configured via `--profiling-bind-address`. The components which are compiled by the Karmada source code support the flag above, including `Karmada-agent`, `Karmada-aggregated-apiserver`, `Karmada-controller-manager`, `Karmada-descheduler`, `Karmada-search`, `Karmada-scheduler`, `Karmada-scheduler-estimator`, `Karmada-webhook`. ``` --enable-pprof Enable profiling via web interface host:port/debug/pprof/. --profiling-bind-address string The TCP address for serving profiling(e.g. 127.0.0.1:6060, :6060). This is only applicable if profiling is enabled. (default ":6060") ``` ## Expose the endpoint at the local port You can get at the application in the pod by port forwarding with kubectl, for example: ```shell $ kubectl -n karmada-system get pod NAME READY STATUS RESTARTS AGE karmada-controller-manager-7567b44b67-8kt59 1/1 Running 0 19s ... ``` ```shell $ kubectl -n karmada-system port-forward karmada-controller-manager-7567b44b67-8kt59 6060 Forwarding from 127.0.0.1:6060 -> 6060 Forwarding from [::1]:6060 -> 6060 ``` The HTTP endpoint will now be available as a local port. ## Generate the data You can then generate the file for the memory profile with curl and pipe the data to a file: ```shell $ curl http://localhost:6060/debug/pprof/heap > heap.pprof ``` Generate the file for the CPU profile with curl and pipe the data to a file (7200 seconds is two hours): ```shell curl "http://localhost:6060/debug/pprof/profile?seconds=7200" > cpu.pprof ``` ## Analyze the data To analyze the data: ```shell go tool pprof heap.pprof ``` ## Read more about profiling 1. [Profiling Golang Programs on Kubernetes](https://danlimerick.wordpress.com/2017/01/24/profiling-golang-programs-on-kubernetes/) 2. [Official Go blog](https://blog.golang.org/pprof)