karmada/pkg/scheduler/core/generic_scheduler.go

207 lines
7.8 KiB
Go

package core
import (
"context"
"fmt"
"time"
"k8s.io/klog/v2"
clusterv1alpha1 "github.com/karmada-io/karmada/pkg/apis/cluster/v1alpha1"
policyv1alpha1 "github.com/karmada-io/karmada/pkg/apis/policy/v1alpha1"
workv1alpha2 "github.com/karmada-io/karmada/pkg/apis/work/v1alpha2"
"github.com/karmada-io/karmada/pkg/scheduler/cache"
"github.com/karmada-io/karmada/pkg/scheduler/core/spreadconstraint"
"github.com/karmada-io/karmada/pkg/scheduler/framework"
"github.com/karmada-io/karmada/pkg/scheduler/framework/runtime"
"github.com/karmada-io/karmada/pkg/scheduler/metrics"
)
// ScheduleAlgorithm is the interface that should be implemented to schedule a resource to the target clusters.
type ScheduleAlgorithm interface {
Schedule(context.Context, *policyv1alpha1.Placement, *workv1alpha2.ResourceBindingSpec, *ScheduleAlgorithmOption) (scheduleResult ScheduleResult, err error)
}
// ScheduleAlgorithmOption represents the option for ScheduleAlgorithm.
type ScheduleAlgorithmOption struct {
EnableEmptyWorkloadPropagation bool
}
// ScheduleResult includes the clusters selected.
type ScheduleResult struct {
SuggestedClusters []workv1alpha2.TargetCluster
}
type genericScheduler struct {
schedulerCache cache.Cache
scheduleFramework framework.Framework
}
// NewGenericScheduler creates a genericScheduler object.
func NewGenericScheduler(
schedCache cache.Cache,
registry runtime.Registry,
) (ScheduleAlgorithm, error) {
f, err := runtime.NewFramework(registry)
if err != nil {
return nil, err
}
return &genericScheduler{
schedulerCache: schedCache,
scheduleFramework: f,
}, nil
}
func (g *genericScheduler) Schedule(ctx context.Context, placement *policyv1alpha1.Placement, spec *workv1alpha2.ResourceBindingSpec, scheduleAlgorithmOption *ScheduleAlgorithmOption) (result ScheduleResult, err error) {
clusterInfoSnapshot := g.schedulerCache.Snapshot()
if clusterInfoSnapshot.NumOfClusters() == 0 {
return result, fmt.Errorf("no clusters available to schedule")
}
feasibleClusters, err := g.findClustersThatFit(ctx, g.scheduleFramework, placement, spec, clusterInfoSnapshot)
if err != nil {
return result, fmt.Errorf("failed to findClustersThatFit: %v", err)
}
if len(feasibleClusters) == 0 {
return result, fmt.Errorf("no clusters fit")
}
klog.V(4).Infof("feasible clusters found: %v", feasibleClusters)
clustersScore, err := g.prioritizeClusters(ctx, g.scheduleFramework, placement, spec, feasibleClusters)
if err != nil {
return result, fmt.Errorf("failed to prioritizeClusters: %v", err)
}
klog.V(4).Infof("feasible clusters scores: %v", clustersScore)
clusters, err := g.selectClusters(clustersScore, placement, spec)
if err != nil {
return result, fmt.Errorf("failed to select clusters: %v", err)
}
klog.V(4).Infof("selected clusters: %v", clusters)
clustersWithReplicas, err := g.assignReplicas(clusters, placement.ReplicaScheduling, spec)
if err != nil {
return result, fmt.Errorf("failed to assignReplicas: %v", err)
}
if scheduleAlgorithmOption.EnableEmptyWorkloadPropagation {
clustersWithReplicas = attachZeroReplicasCluster(clusters, clustersWithReplicas)
}
result.SuggestedClusters = clustersWithReplicas
return result, nil
}
// findClustersThatFit finds the clusters that are fit for the placement based on running the filter plugins.
func (g *genericScheduler) findClustersThatFit(
ctx context.Context,
fwk framework.Framework,
placement *policyv1alpha1.Placement,
bindingSpec *workv1alpha2.ResourceBindingSpec,
clusterInfo *cache.Snapshot) ([]*clusterv1alpha1.Cluster, error) {
defer metrics.ScheduleStep(metrics.ScheduleStepFilter, time.Now())
var out []*clusterv1alpha1.Cluster
// DO NOT filter unhealthy cluster, let users make decisions by using ClusterTolerations of Placement.
clusters := clusterInfo.GetClusters()
for _, c := range clusters {
if result := fwk.RunFilterPlugins(ctx, placement, bindingSpec, c.Cluster()); !result.IsSuccess() {
klog.V(4).Infof("cluster %q is not fit, reason: %v", c.Cluster().Name, result.AsError())
} else {
out = append(out, c.Cluster())
}
}
return out, nil
}
// prioritizeClusters prioritize the clusters by running the score plugins.
func (g *genericScheduler) prioritizeClusters(
ctx context.Context,
fwk framework.Framework,
placement *policyv1alpha1.Placement,
spec *workv1alpha2.ResourceBindingSpec,
clusters []*clusterv1alpha1.Cluster) (result framework.ClusterScoreList, err error) {
defer metrics.ScheduleStep(metrics.ScheduleStepScore, time.Now())
scoresMap, err := fwk.RunScorePlugins(ctx, placement, spec, clusters)
if err != nil {
return result, err
}
if klog.V(4).Enabled() {
for plugin, nodeScoreList := range scoresMap {
klog.Infof("Plugin %s scores on %v/%v => %v", plugin, spec.Resource.Namespace, spec.Resource.Name, nodeScoreList)
}
}
result = make(framework.ClusterScoreList, len(clusters))
for i := range clusters {
result[i] = framework.ClusterScore{Cluster: clusters[i], Score: 0}
for j := range scoresMap {
result[i].Score += scoresMap[j][i].Score
}
}
return result, nil
}
func (g *genericScheduler) selectClusters(clustersScore framework.ClusterScoreList,
placement *policyv1alpha1.Placement, spec *workv1alpha2.ResourceBindingSpec) ([]*clusterv1alpha1.Cluster, error) {
defer metrics.ScheduleStep(metrics.ScheduleStepSelect, time.Now())
groupClustersInfo := spreadconstraint.GroupClustersWithScore(clustersScore, placement, spec, calAvailableReplicas)
return spreadconstraint.SelectBestClusters(placement, groupClustersInfo, spec.Replicas)
}
func (g *genericScheduler) assignReplicas(
clusters []*clusterv1alpha1.Cluster,
replicaSchedulingStrategy *policyv1alpha1.ReplicaSchedulingStrategy,
object *workv1alpha2.ResourceBindingSpec,
) ([]workv1alpha2.TargetCluster, error) {
defer metrics.ScheduleStep(metrics.ScheduleStepAssignReplicas, time.Now())
if len(clusters) == 0 {
return nil, fmt.Errorf("no clusters available to schedule")
}
targetClusters := make([]workv1alpha2.TargetCluster, len(clusters))
if object.Replicas > 0 && replicaSchedulingStrategy != nil {
switch replicaSchedulingStrategy.ReplicaSchedulingType {
// 1. Duplicated Scheduling
case policyv1alpha1.ReplicaSchedulingTypeDuplicated:
for i, cluster := range clusters {
targetClusters[i] = workv1alpha2.TargetCluster{Name: cluster.Name, Replicas: object.Replicas}
}
return targetClusters, nil
// 2. Divided Scheduling
case policyv1alpha1.ReplicaSchedulingTypeDivided:
switch replicaSchedulingStrategy.ReplicaDivisionPreference {
// 2.1 Weighted Scheduling
case policyv1alpha1.ReplicaDivisionPreferenceWeighted:
// If ReplicaDivisionPreference is set to "Weighted" and WeightPreference is not set,
// scheduler will weight all clusters averagely.
if replicaSchedulingStrategy.WeightPreference == nil {
replicaSchedulingStrategy.WeightPreference = getDefaultWeightPreference(clusters)
}
// 2.1.1 Dynamic Weighted Scheduling (by resource)
if len(replicaSchedulingStrategy.WeightPreference.DynamicWeight) != 0 {
return divideReplicasByDynamicWeight(clusters, replicaSchedulingStrategy.WeightPreference.DynamicWeight, object)
}
// 2.1.2 Static Weighted Scheduling
return divideReplicasByStaticWeight(clusters, replicaSchedulingStrategy.WeightPreference.StaticWeightList, object.Replicas)
// 2.2 Aggregated scheduling (by resource)
case policyv1alpha1.ReplicaDivisionPreferenceAggregated:
return divideReplicasByResource(clusters, object, policyv1alpha1.ReplicaDivisionPreferenceAggregated)
default:
return nil, fmt.Errorf("undefined replica division preference: %s", replicaSchedulingStrategy.ReplicaDivisionPreference)
}
default:
return nil, fmt.Errorf("undefined replica scheduling type: %s", replicaSchedulingStrategy.ReplicaSchedulingType)
}
}
for i, cluster := range clusters {
targetClusters[i] = workv1alpha2.TargetCluster{Name: cluster.Name}
}
return targetClusters, nil
}