karmada/pkg/scheduler/core/generic_scheduler.go

193 lines
6.5 KiB
Go

package core
import (
"context"
"fmt"
"k8s.io/klog/v2"
clusterv1alpha1 "github.com/karmada-io/karmada/pkg/apis/cluster/v1alpha1"
policyv1alpha1 "github.com/karmada-io/karmada/pkg/apis/policy/v1alpha1"
workv1alpha1 "github.com/karmada-io/karmada/pkg/apis/work/v1alpha1"
lister "github.com/karmada-io/karmada/pkg/generated/listers/policy/v1alpha1"
"github.com/karmada-io/karmada/pkg/scheduler/cache"
"github.com/karmada-io/karmada/pkg/scheduler/framework"
"github.com/karmada-io/karmada/pkg/scheduler/framework/runtime"
"github.com/karmada-io/karmada/pkg/util"
)
// ScheduleAlgorithm is the interface that should be implemented to schedule a resource to the target clusters.
type ScheduleAlgorithm interface {
Schedule(context.Context, *policyv1alpha1.Placement, *workv1alpha1.ObjectReference) (scheduleResult ScheduleResult, err error)
}
// ScheduleResult includes the clusters selected.
type ScheduleResult struct {
SuggestedClusters []string
}
type genericScheduler struct {
schedulerCache cache.Cache
// TODO: move it into schedulerCache
policyLister lister.PropagationPolicyLister
scheduleFramework framework.Framework
}
// NewGenericScheduler creates a genericScheduler object.
func NewGenericScheduler(
schedCache cache.Cache,
policyLister lister.PropagationPolicyLister,
plugins []string,
) ScheduleAlgorithm {
return &genericScheduler{
schedulerCache: schedCache,
policyLister: policyLister,
scheduleFramework: runtime.NewFramework(plugins),
}
}
func (g *genericScheduler) Schedule(ctx context.Context, placement *policyv1alpha1.Placement, resource *workv1alpha1.ObjectReference) (result ScheduleResult, err error) {
clusterInfoSnapshot := g.schedulerCache.Snapshot()
if clusterInfoSnapshot.NumOfClusters() == 0 {
return result, fmt.Errorf("no clusters available to schedule")
}
feasibleClusters, err := g.findClustersThatFit(ctx, g.scheduleFramework, placement, resource, clusterInfoSnapshot)
if err != nil {
return result, fmt.Errorf("failed to findClustersThatFit: %v", err)
}
if len(feasibleClusters) == 0 {
return result, fmt.Errorf("no clusters fit")
}
klog.V(4).Infof("feasible clusters found: %v", feasibleClusters)
clustersScore, err := g.prioritizeClusters(ctx, g.scheduleFramework, placement, feasibleClusters)
if err != nil {
return result, fmt.Errorf("failed to prioritizeClusters: %v", err)
}
klog.V(4).Infof("feasible clusters scores: %v", clustersScore)
clusters := g.selectClusters(clustersScore, placement.SpreadConstraints, feasibleClusters)
result.SuggestedClusters = clusters
return result, nil
}
// findClustersThatFit finds the clusters that are fit for the placement based on running the filter plugins.
func (g *genericScheduler) findClustersThatFit(
ctx context.Context,
fwk framework.Framework,
placement *policyv1alpha1.Placement,
resource *workv1alpha1.ObjectReference,
clusterInfo *cache.Snapshot) ([]*clusterv1alpha1.Cluster, error) {
var out []*clusterv1alpha1.Cluster
clusters := clusterInfo.GetReadyClusters()
for _, c := range clusters {
resMap := fwk.RunFilterPlugins(ctx, placement, resource, c.Cluster())
res := resMap.Merge()
if !res.IsSuccess() {
klog.V(4).Infof("cluster %q is not fit", c.Cluster().Name)
} else {
out = append(out, c.Cluster())
}
}
return out, nil
}
// prioritizeClusters prioritize the clusters by running the score plugins.
func (g *genericScheduler) prioritizeClusters(
ctx context.Context,
fwk framework.Framework,
placement *policyv1alpha1.Placement,
clusters []*clusterv1alpha1.Cluster) (result framework.ClusterScoreList, err error) {
scoresMap, err := fwk.RunScorePlugins(ctx, placement, clusters)
if err != nil {
return result, err
}
result = make(framework.ClusterScoreList, len(clusters))
for i := range clusters {
result[i] = framework.ClusterScore{Name: clusters[i].Name, Score: 0}
for j := range scoresMap {
result[i].Score += scoresMap[j][i].Score
}
}
return result, nil
}
func (g *genericScheduler) selectClusters(clustersScore framework.ClusterScoreList, spreadConstraints []policyv1alpha1.SpreadConstraint, clusters []*clusterv1alpha1.Cluster) []string {
if len(spreadConstraints) != 0 {
return g.matchSpreadConstraints(clusters, spreadConstraints)
}
out := make([]string, len(clustersScore))
for i := range clustersScore {
out[i] = clustersScore[i].Name
}
return out
}
func (g *genericScheduler) matchSpreadConstraints(clusters []*clusterv1alpha1.Cluster, spreadConstraints []policyv1alpha1.SpreadConstraint) []string {
state := util.NewSpreadGroup()
g.runSpreadConstraintsFilter(clusters, spreadConstraints, state)
return g.calSpreadResult(state)
}
// Now support spread by cluster. More rules will be implemented later.
func (g *genericScheduler) runSpreadConstraintsFilter(clusters []*clusterv1alpha1.Cluster, spreadConstraints []policyv1alpha1.SpreadConstraint, spreadGroup *util.SpreadGroup) {
for _, spreadConstraint := range spreadConstraints {
spreadGroup.InitialGroupRecord(spreadConstraint)
if spreadConstraint.SpreadByField == policyv1alpha1.SpreadByFieldCluster {
g.groupByFieldCluster(clusters, spreadConstraint, spreadGroup)
}
}
}
func (g *genericScheduler) groupByFieldCluster(clusters []*clusterv1alpha1.Cluster, spreadConstraint policyv1alpha1.SpreadConstraint, spreadGroup *util.SpreadGroup) {
for _, cluster := range clusters {
clusterGroup := cluster.Name
spreadGroup.GroupRecord[spreadConstraint][clusterGroup] = append(spreadGroup.GroupRecord[spreadConstraint][clusterGroup], cluster.Name)
}
}
func (g *genericScheduler) calSpreadResult(spreadGroup *util.SpreadGroup) []string {
// TODO: now support single spread constraint
if len(spreadGroup.GroupRecord) > 1 {
return nil
}
return g.chooseSpreadGroup(spreadGroup)
}
func (g *genericScheduler) chooseSpreadGroup(spreadGroup *util.SpreadGroup) []string {
var feasibleClusters []string
for spreadConstraint, clusterGroups := range spreadGroup.GroupRecord {
if spreadConstraint.SpreadByField == policyv1alpha1.SpreadByFieldCluster {
if len(clusterGroups) < spreadConstraint.MinGroups {
return nil
}
if len(clusterGroups) <= spreadConstraint.MaxGroups {
for _, v := range clusterGroups {
feasibleClusters = append(feasibleClusters, v...)
}
break
}
if spreadConstraint.MaxGroups > 0 && len(clusterGroups) > spreadConstraint.MaxGroups {
var groups []string
for group := range clusterGroups {
groups = append(groups, group)
}
for i := 0; i < spreadConstraint.MaxGroups; i++ {
feasibleClusters = append(feasibleClusters, clusterGroups[groups[i]]...)
}
}
}
}
return feasibleClusters
}