
PRESENTS

Knative security audit
In collaboration with the Knative maintainers, Open Source Technology Improvement Fund and
The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 4th December 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

Knative Security Audit 2023

Table of contents

Table of contents 1
Project Summary 2
Audit Scope 2
Executive summary 4
Threat model 6
SLSA 14
Issues found 16
Knative static analysis tooling 44

1

Knative Security Audit 2023

Project Summary
The auditors of Ada Logics were:

Name Title Email

Adam Korczynski Security Engineer, Ada Logics Adam@adalogics.com

David Korczynski Security Researcher, Ada Logics David@adalogics.com

The Knative community members involved in audit were:

Name Title Email

Evan Anderson Knative Maintainer Evan.k.anderson@gmail.com

David Hadas Knative Maintainer Davidh@il.ibm.com

The following facilitators of OSTIF were engaged in the audit:

Name Title Email

Derek Zimmer Executive Director, OSTIF Derek@ostif.org

Amir Montazery Managing Director, OSTIF Amir@ostif.org

Helen Woeste Project Manager, OSTIF Helen@ostif.org

Audit Scope
The following assets were in scope of the audit.

Repository https://github.com/knative/eventing

Language Go

Repository https://github.com/knative/serving

Language Go

Repository https://github.com/knative/pkg

Language Go

2

Knative Security Audit 2023

Repository https://github.com/knative/func

Language Go

Repository https://github.com/knative-extensions/eventing-autoscaler-ke
da

Language Go

Repository https://github.com/knative-extensions/eventing-ceph

Language Go

Repository https://github.com/knative-extensions/eventing-couchdb

Language Go

Repository https://github.com/knative-extensions/eventing-github

Language Go

Repository https://github.com/knative-extensions/eventing-gitlab

Language Go

Repository https://github.com/knative-extensions/eventing-istio

Language Go

Repository https://github.com/knative-extensions/eventing-kafka-broker

Language Go

Repository https://github.com/knative-extensions/eventing-redis

Language Go

3

Knative Security Audit 2023

Executive summary
In the fall of 2023, Ada Logics conducted a security audit of Knative in a collaboration between Ada
Logics, the Knative maintainers, The Open Source Technology Improvement Fund (OSTIF) and the
Cloud Native Computing Foundation (CNCF). The engagement was a holistic security audit with
the following goals:

1. Formalize a threat model of the Knative ecosystem.
2. Manually audit the Knative code base for security vulnerabilities of any severity.
3. Assess Knatives supply-chain risk against the SLSA framework.

The main scope of the audit was the Eventing, Serving and Pkg sub-projects with an additional
minor focus on the Knative Extensions projects.

The audit found 16 issues ranging from Informational to High severity. Ada Logics reported the
found issues ad hoc to the Knative team, who would coordinate that the Knative community fix the
issues. The Ada Logics team also helped fix the issues found with patches submitted to the Knative
repositories.
The most exciting security finding was a vulnerability in Knative serving, which could allow an
attacker with escalated privileges in one Knative pod to cause a denial of service of the
compromised Knative deployment. The finding has been assigned CVE-2023-48713 and fixed in
Knative Serving v1.12.0 and v1.11.3.

Knative implements a provenance generator that adds in-toto provenance attestations to releases.
Knative was maintaining and using this prior to this security, and consumers have been able to
verify their Knative artifacts prior to consuming.

At the time of the audit, Knative Serving was not adding the provenance to releases; The
maintainers fixed this before the audit completed.

4

Knative Security Audit 2023

Strategic Recommendations
In this section, we enumerate our strategic recommendations for Knative. We recommend that the
Knative community works on these improvements in the long term to improve its security posture
over time. They are practical and approachable by maintainers and contributors.

Review Knative's third-party dependencies
Ada Logics found several code issues in third-party dependencies during the audit. Some of these
were found in user-exposed APIs. In addition to code errors, we found that several of Knative's
third-party dependencies are not actively maintained, making it hard for community contributors
to submit patches to fix found issues. For example, the Knative Eventing-Github uses the webhook
implementation from the https://github.com/go-playground/webhooks library to receive events
from GitHub. From our assessment, https://github.com/go-playground/webhooks does not meet
the security standards that Knative requires. We recommend that Knative performs an ongoing
review of dependencies to ensure that they 1) are required and 2) that they meet industry best
practices. On the first point, whether Knative's dependencies are required, Knative might be
importing a whole package to use a small part of the logic, and we recommend assessing whether
Knative can implement the same logic without importing a given package. On the second point,
Knative can use the Scorecard (https://github.com/ossf/scorecard) project to evaluate the security
risk of its dependencies and require third-party dependencies to maintain a high Scorecard score.

Improve SAST tooling for the entire Knative ecosystem
Knative has integrated SAST tools in its core packages, Eventing and Serving. During the audit, Ada
Logics ran the same tools against Knative Extensions projects, Func and Security Guard, which
revealed true-positive findings. We recommendmaintaining the same SAST suite for Knative
Extensions projects and Knative Func as Knative Eventing and Serving maintains.

5

https://github.com/go-playground/webhooks
https://github.com/go-playground/webhooks

Knative Security Audit 2023

Threat model
In this section, we present the findings of the threat modelling goal of the security audit. We first
cover the data flow of the Knative ecosystem, then common threats that Knative and its users face.
We detail the attack vectors of Knative, and finally, we enumerate the threat actors impacting the
Knative threat model.

Knative Eventing
Knative Eventing is a library used for developing applications on an event-driven architecture. A
high-level goal of Knative Enting is to handle the transport of events from event producers to event
consumers. Event producers and consumers are external to the Knative Eventing ecosystem - also
called the Event Mesh. A producer is anything that can produce an event, such as external clients,
applications, humans or IoT devices. A consumer is a service that receives the data from the event
and processes it. This can for example be a cloud service, an application, a database or something
else. The Knative Event Mesh is responsible for relaying the event from the producer to the
consumer.

Knative Eventing consists of three main parts: Event Sources, a broker and triggers. Event Sources
are the entrypoints into Knative Eventing and receive ingress traffic from the users choice of
tooling. To illustrate this in practice, a user could write an Event Source to receive requests from
their Slack workspace in their Knative Eventing deployment. In fact, a Slack Event Source has been
suggested by the Knative community in the past1. Knative maintains a list of optional official Event
Sources in the Knative-Extensions repository2. At the time of this audit, these are:

Name Release status

1 Eventing-Autoscaler-Keda Alpha

2 Eventing-Ceph Beta

3 Eventing-CouchDB Alpha

4 Eventing-Github Alpha

5 Eventing-Gitlab Alpha

6 Eventing-Istio Beta

7 Eventing-Kafka GA

8 Eventing-Kogito Alpha

9 Eventing-NATS Beta

10 Eventing-RabbitMQ GA

2 https://github.com/knative-extensions
1 https://github.com/knative/eventing-contrib/issues/344

6

https://github.com/knative-extensions
https://github.com/knative/eventing-contrib/issues/344

Knative Security Audit 2023

11 Eventing-Redis Beta

The Broker and the Triggers handle the routing of incoming events. The Broker receives the event
from the Event Source in the form of an HTTP request, parses it to a CloudEvents request and
relays it to the trigger over a channel.

Below we cover the data and trust flow of the Knative Event Mesh.

Trustflow analysis
In this part of the Knative Eventing threat modelling we frame the data and trust flow of Knative
Eventing. We illustrate this by way of diagram 1.0.0 that shows the data and trust flow of Knative
eventing. At the top of the diagram are the event producers. These are exemplified by a github
repository for the Eventing-Github Event Source, a Gitlab repository for the Eventing-Gitlab Event
Source and a User. The User event producer demonstrates that Knative Eventing accepts calls
directly to the broker. The event producers are encapsulated in a red box that denotes that these
are untrusted entities. From the event producers to the Event Sources and further to the Broker,
the trust flows low to high. From the Broker to the Triggers, the data flows with no change in level
of trust, and finally the trust flows high to low from the Triggers to the event consumers, which in
the diagram are exemplified as remote services - ie. a database, another cloud service, an
application API or something else.

Trustflow overview

From component To component Level of trust flow

Event producers Event Sources Low to high

Event producers Broker Low to high

Event Sources Broker Low to high

Broker Triggers No change in trust

Triggers Event consumers High to low

7

Knative Security Audit 2023

Trustflow diagram

Figure 1.0.0: Trust and data flow of the Knative Event Mesh

8

Knative Security Audit 2023

Knative Eventing threat actors
In this section, we enumerate the threat actors of the Knative ecosystem. A threat actor is an
individual or group that intentionally attempts to exploit vulnerabilities, deploy malicious code, or
compromise or disrupt a Knative Eventing deployment, o�en for financial gain, espionage, or
sabotage.
We identify the following threat actors below. For example, a fully untrusted user can also be a
contributor to a 3rd-party library used by Knative Eventing. A threat actor can assumemultiple
profiles from the table.

Actor Description Level of trust

External attacker Users that have not been granted any privileges
and are unauthenticated.

Fully untrusted

Internal users These are users that have permissions to navigate
andmodify the environment that produces the
events. In the case of the Github Event Source,
this would be users with access to the Github
repository. In the case of an Event Source for
Slack, this would be users in the Slack channel.

Limited trust

Internal admins These are users whomanage the environment
that produces the events. In the case of the
GitHub Event Source, these are admins of the
GitHub repository. In the case of an Event Source
for Slack, these are the admins of the Slack
channel.

Limited trust

Cluster operator A user with permissions to manage the
Kubernetes cluster for deployments of Knative
Eventing.

Fully trusted

Contributors to
3rd-party
dependencies

Contributors to dependencies used by Knative
Eventing.

Fully untrusted

Well-funded
criminal groups

Organized criminal groups that o�en have either
political or economic goals. These groups
typically have large resources available and
specific goals to achieve.

Fully untrusted

9

Knative Security Audit 2023

Knative Serving
From a high level, Knative Serving is an autoscaler. It manages the infrastructure to autoscale
based on the amount of incoming traffic and the userʼs configuration. Knative Serving intercepts
and evaluates traffic from the cluster or the internet before it reaches the userʼs application.
Knative Serving will autoscale the necessary infrastructure based on the amount of traffic.

Users will deploy their applications in the Knative Service Pod. Knative runs a sidecar container
called Queue-Proxy next to the userʼs application. Queue-Proxys job is to collect traffic metrics at
runtime and impose the required concurrency of traffic to the users application container.
Queue-Proxy can also queue traffic.

The autoscaler communicates to the Kubernetes Apiserver and sets the desired state of the cluster.

Trustflow analysis
Traffic enters Knative Serving through the ingress gateway. The ingress gateway is not the
Kubernetes Ingress Gateway but rather an abstract representation of exposing the Knative
infrastructure to the cluster. Knative can also expose the ingress gateway to traffic from outside the
cluster by way of a Kubernetes LoadBalancer or NodePort. The ingress gateway is pluggable and
does not have a standard implementation. From the ingress gateway, traffic flows to either the
Activator or a Knative Service Pod, dependending on the user's configuration.

The traffic flows from the Activator to the Knative Service Pod. The Activator does not forward
traffic to the autoscaler. Rather, the autoscaler probes the activator to scale up or down.

When traffic reaches the Knative Service Pod, it first flows through Queue-Proxy before it arrives at
the destination: The user container. Users can optionally enable Security-Guard in the
Queue-Proxy sidecar. Security-Guard is an official Knative extension that is not enabled by default
in an out-of-the-box Knative deployment. It maintains a collection of micro-rules that
Security-Guard uses to identify attempts to exploit a vulnerability in the user's application or its
dependencies. The trust of the traffic from the ingress gateway and activator flows low to high to
Security-Guard. A�er Security-Guard traffic flows with an unchanged level of trust to the user
container. Note that the user application may need to do authentication or authorization of the
request; however, from the perspective of Knatives security model, this is entirely the
responsibility of the userʼs application.

There is a line of trust flow from the Kubernetes Apiserver once the autoscaler redefines the
desired state of the cluster. This is in case a change happens to the image reference in the user
container, and Kubernetes will fetch the image from the user-provided image reference. The
registry is untrusted, and as such, data flows high to low from the K8s API Server to the registry and
low to high from the registry to the API Server. While this is an attack surface for a Knative
deployment, Knative relies on Kubernetes to fetch the correct image to the cluster and validate it.

10

Knative Security Audit 2023

From component To component Level of trust flow

Internet/cluster Ingress gateway Low to high

Ingress gateway Activator Low to low

Ingress gateway Queue-Proxy Low to high

Queue-Proxy Security-Guard Low to high

Security-Guard User container High to high

11

Knative Security Audit 2023

Figure 1.0.1: Trust and data flow of the Knative Serving

12

Knative Security Audit 2023

Knative Serving threat actors
A threat actor is an individual or group that intentionally attempts to exploit vulnerabilities, deploy
malicious code, or compromise or disrupt a Knative deployment, o�en for financial gain,
espionage, or sabotage. A threat actor is the personification of a possible attacker of security
issues. Each threat actor has a level of trust tied to them, andmatching one or several threat actors
with Knativeʼs threat model helps identify the high-level security risk. We identify the following
threat actors for Knative. A threat actor can assumemultiple profiles from the table below; for
example, a fully untrusted user can also be a contributor to a 3rd-party library used by Knative.

Actor Description Level of trust

External attacker Users that have not been granted any privileges and
are unauthenticated. If the Knative admin has
exposed their Serving deployment to the internet,
then this threat has the Ingress Gateway as their
main legitimate attack surface. This threat actor is
not a threat if Serving is not exposed to the internet.

Fully untrusted

Cluster operator A user who has permissions to manage the
Kubernetes cluster for deployments of Knative
Serving.

Fully trusted

Contributors to
Knative Serving

Code contributors to Knative Serving. This threat
actor will compromise a Knative deployment by
adding or finding vulnerabilities in 3rd-party libraries
used by Knative Serving.

Fully untrusted

Contributors to
3rd-party
dependencies

Contributors to dependencies used by Knative
Serving. This threat actor will compromise a Knative
Deployment by adding or finding vulnerabilities in
3rd-party libraries used by Knative Serving.

Fully untrusted

Malicious image
maintainer

A threat actor that maintains an image in a public
registry used by a Knative Serving user, and who
deliberately publishes a malicious image.

Fully untrusted

Well-funded
criminal groups

Organized criminal groups that o�en have either
political or economic goals. These groups typically
have large resources available and specific goals to
achieve.

Fully untrusted

13

Knative Security Audit 2023

SLSA
ADA Logics conducted a Supply Chain Levels for So�ware Artifacts (SLSA) review of Knative. SLSA
(https://github.com/slsa.dev) is a framework for assessing the security practices of a given
so�ware project with a focus onmitigating supply-chain risk. SLSA emphasises tamper resistance
of artifacts as well as ephemerality of the build and release cycle.

SLSAmitigates a series of attack vectors in the so�ware development life cycle (SDLC), all of which
have seen real-world examples of successful attacks against open-source and proprietary so�ware.

Below we see a diagrammade by the SLSA illustrating the attack surface of the SDLC.

Each of the redmarkers show different areas of possible compromise that could allow attackers to
tamper with the artifact that the consumer invokes at the end of the SDLC.

SLSA splits its assessment criteria into 4, increasingly demanding levels ranging from level 0 to 3.
The higher the level of compliance, the higher tamper-resistance the project ensures its
consumers.

14

https://github.com/slsa.dev

Knative Security Audit 2023

Knative maintains its own generator to generate and include provenance in releases. The
provenance generator is maintained at
https://github.com/knative/toolbox/tree/main/provenance-generator and is a wrapper around
Kubernetes' provenance generator. The provenance generator runs as part of the release on the
line marked below:

https://github.com/knative/hack/blob/7030d5bf584de17a82ec8742c1078ca50633d45e/release.sh#L404-L
421

ID_TOKEN=$(gcloud auth print-identity-token --audiences=sigstore \

--include-email \

--impersonate-service-account="${SIGNING_IDENTITY}")

echo "Signing Images with the identity ${SIGNING_IDENTITY}"

Sign the images with cosign

if [[-f "$IMAGES_REFS_FILE"]]; then

COSIGN_EXPERIMENTAL=1 cosign sign $(cat "$IMAGES_REFS_FILE") \

--recursive --identity-token="${ID_TOKEN}"

cp "${IMAGES_REFS_FILE}" "${ARTIFACTS}"

if [-n "${ATTEST_IMAGES:-}"]; then # Temporary Feature Gate

provenance-generator --clone-log=/logs/clone.json \

--image-refs="$IMAGES_REFS_FILE" --output=attestation.json

mkdir -p "${ARTIFACTS}" && cp attestation.json "${ARTIFACTS}"

COSIGN_EXPERIMENTAL=1 cosign attest $(cat "$IMAGES_REFS_FILE") \

--recursive --identity-token="${ID_TOKEN}" \

--predicate=attestation.json --type=slsaprovenance

fi

fi

Consumers can download and verify provenance by following these steps:
First install cosign: https://docs.sigstore.dev/system_config/installation/

Next, download the provenance of the Knative v1.12.1 Eventing image,
gcr.io/knative-releases/knative.dev/eventing/cmd/controller@sha256:2ba4b01d6f36528

18aa85f7fe0939e869b43734241f1f9bdda0f9db760e1dfa9, by running this command:

cosign download attestation $(curl -L

https://github.com/knative/eventing/releases/download/knative-v1.12.1/eventing-cor

e.yaml | grep image: | head -1 | cut -d: -f2-)

To read the provenance, add the following to the above command: | jq -r '.payload' |

base64 --decode | jq.

You should see the following provenance:

{

"_type": "https://in-toto.io/Statement/v0.1",

"predicateType": "https://slsa.dev/provenance/v0.2",

15

https://github.com/knative/toolbox/tree/main/provenance-generator
https://github.com/knative/hack/blob/7030d5bf584de17a82ec8742c1078ca50633d45e/release.sh#L404-L421
https://github.com/knative/hack/blob/7030d5bf584de17a82ec8742c1078ca50633d45e/release.sh#L404-L421
https://docs.sigstore.dev/system_config/installation/

Knative Security Audit 2023

"subject": [

{

"name": "gcr.io/knative-releases/knative.dev/eventing/cmd/controller",

"digest": {

"sha256": "2ba4b01d6f3652818aa85f7fe0939e869b43734241f1f9bdda0f9db760e1dfa9"

}

}

],

"predicate": {

"builder": {

"id": "https://prow.knative.dev"

},

"buildType": "https://prow.knative.dev/ProwJob@v1",

"invocation": {

"configSource": {

"entryPoint":

"https://github.com/knative/test-infra/tree/main/prow/jobs/generated/knative"

}

},

"buildConfig": {

"command": [

"runner.sh",

"./hack/release.sh",

"--dot-release",

"--release-gcs",

"knative-releases/eventing",

"--release-gcr",

"gcr.io/knative-releases",

"--github-token",

"/etc/hub-token/token",

"--branch",

"release-1.12"

],

"entrypoint": {

"args": [

"runner.sh",

"./hack/release.sh",

"--dot-release",

"--release-gcs",

"knative-releases/eventing",

"--release-gcr",

"gcr.io/knative-releases",

"--github-token",

"/etc/hub-token/token",

"--branch",

"release-1.12"

],

"artifact_dir": "/logs/artifacts",

"container_name": "test",

"grace_period": 15000000000,

"marker_file": "/logs/marker-file.txt",

"metadata_file": "/logs/artifacts/metadata.json",

"process_log": "/logs/process-log.txt",

"timeout": 14400000000000

},

"prowjob": {

16

Knative Security Audit 2023

"metadata": {

"annotations": {

"prow.k8s.io/context": "",

"prow.k8s.io/job": "release_eventing_release-1.12_periodic",

"testgrid-dashboards": "knative-release-1.12",

"testgrid-tab-name": "eventing-release"

},

"creationTimestamp": "2023-11-28T09:38:15Z",

"generation": 4,

"labels": {

"created-by-prow": "true",

"prow.k8s.io/build-id": "1729434521369055232",

"prow.k8s.io/context": "",

"prow.k8s.io/id": "88d5cb2c-0368-4cf1-9763-4917942e5dfd",

"prow.k8s.io/job": "release_eventing_release-1.12_periodic",

"prow.k8s.io/refs.base_ref": "release-1.12",

"prow.k8s.io/refs.org": "knative",

"prow.k8s.io/refs.repo": "eventing",

"prow.k8s.io/type": "periodic"

},

"name": "88d5cb2c-0368-4cf1-9763-4917942e5dfd",

"namespace": "default",

"resourceVersion": "511241023",

"uid": "3a7125a0-935b-4433-a30b-0430ae2b46e5"

},

"spec": {

"agent": "kubernetes",

"cluster": "prow-build",

"decoration_config": {

"gcs_configuration": {

"bucket": "knative-prow",

"path_strategy": "explicit"

},

"gcs_credentials_secret": "gcs-upload",

"grace_period": "15s",

"resources": {

"sidecar": {

"requests": {

"cpu": "100m",

"memory": "20Mi"

}

}

},

"timeout": "4h0m0s",

"utility_images": {

"clonerefs": "gcr.io/k8s-prow/clonerefs:v20231121-4e39ac27ea",

"entrypoint": "gcr.io/k8s-prow/entrypoint:v20231121-4e39ac27ea",

"initupload": "gcr.io/k8s-prow/initupload:v20231121-4e39ac27ea",

"sidecar": "gcr.io/k8s-prow/sidecar:v20231121-4e39ac27ea"

}

},

"extra_refs": [

{

"base_ref": "release-1.12",

"org": "knative",

"path_alias": "knative.dev/eventing",

17

Knative Security Audit 2023

"repo": "eventing"

}

],

"job": "release_eventing_release-1.12_periodic",

"max_concurrency": 1,

"namespace": "test-pods",

"pod_spec": {

"containers": [

{

"command": [

"runner.sh",

"./hack/release.sh",

"--dot-release",

"--release-gcs",

"knative-releases/eventing",

"--release-gcr",

"gcr.io/knative-releases",

"--github-token",

"/etc/hub-token/token",

"--branch",

"release-1.12"

],

"env": [

{

"name": "GOOGLE_APPLICATION_CREDENTIALS",

"value": "/etc/release-account/service-account.json"

},

{

"name": "E2E_CLUSTER_REGION",

"value": "us-central1"

},

{

"name": "SIGN_IMAGES",

"value": "true"

},

{

"name": "ATTEST_IMAGES",

"value": "true"

}

],

"image":

"us-docker.pkg.dev/knative-tests/images/prow-tests:v20231122-b38b92934",

"name": "",

"resources": {

"limits": {

"memory": "16Gi"

},

"requests": {

"memory": "12Gi"

}

},

"securityContext": {

"privileged": true

},

"volumeMounts": [

{

18

Knative Security Audit 2023

"mountPath": "/etc/hub-token",

"name": "hub-token",

"readOnly": true

},

{

"mountPath": "/etc/release-account",

"name": "release-account",

"readOnly": true

}

]

}

],

"nodeSelector": {

"kubernetes.io/arch": "amd64",

"type": "testing"

},

"volumes": [

{

"name": "hub-token",

"secret": {

"items": [

{

"key": "hub_token",

"path": "token"

}

],

"secretName": "github-credentials"

}

},

{

"name": "release-account",

"secret": {

"items": [

{

"key": "release.json",

"path": "service-account.json"

}

],

"secretName": "prow-google-credentials"

}

}

]

},

"prowjob_defaults": {

"tenant_id": "GlobalDefaultID"

},

"report": true,

"type": "periodic"

},

"status": {

"startTime": null

}

}

},

"metadata": {

"buildInvocationID": "1729434521369055232",

19

Knative Security Audit 2023

"buildStartedOn": "2023-11-28T09:38:15Z",

"buildFinishedOn": "2023-11-28T12:01:52.247419694Z",

"completeness": {

"parameters": true,

"environment": true,

"materials": true

},

"reproducible": false

},

"materials": [

{

"uri": "git+https://github.com/knative/eventing",

"digest": {

"sha1": "747a9f54a6caa7c345f0b605520aecf85908bf49"

}

}

]

}

}

This is a SLSA-compliant provenance. Note that it is SLSA v0.2 whereas the latest SLSA release is
v1.0. Consumers can verify the provenance by following the steps outlined here:
https://slsa.dev/spec/v1.0/verifying-artifacts.

During the audit, the Knative Maintainers found that Knative Serving was not including
provenance. This was due to a fewmissing lines in the Prow configuration, and the Knative
maintainers fixed that: https://github.com/knative/infra/pull/288.

20

https://slsa.dev/spec/v1.0/verifying-artifacts
https://github.com/knative/infra/pull/288

Knative Security Audit 2023

Issues found
ID Title Severity Fixed

1 ADA-KNATIVE-23-1 Issue in third-party dependency Moderate In
progress

2 ADA-KNATIVE-23-2 3rd-party dependency uses insecure
cryptographic primitive for sensitive data

Informational In
progress

3 ADA-KNATIVE-23-3 Slice bound out of range in 3rd-party
dependency

Informational In
progress

4 ADA-KNATIVE-23-4 Two potential slowloris attacks in
eventing-github

Low Yes

5 ADA-KNATIVE-23-5 Security Guard exposes profiling
endpoints by default

Low Yes

6 ADA-KNATIVE-23-6 Two potential slowloris attacks in
Security Guard

Low Yes

7 ADA-KNATIVE-23-7 Remote code execution from lack of
image validation in Knative Func

High Yes

8 ADA-KNATIVE-23-8 Lack of logging in case image is
referenced by tag

Moderate Yes

9 ADA-KNATIVE-23-9 Possible infinity loop over untrusted
image

Moderate Yes

10 ADA-KNATIVE-23-10 Attacker-controlled pod can cause denial
of service of autoscaler

Moderate Yes

11 ADA-KNATIVE-23-11 Out of bounds read panic in
Security-guard authentication

Informational Yes

12 ADA-KNATIVE-23-12 Missing SECURITY.md file Informational Yes

13 ADA-KNATIVE-23-13 Possible DoS in Security Guard /sync
endpoint

Moderate Yes

14 ADA-KNATIVE-23-14 Possible DoS in Security Guard /mutate
endpoint

Moderate Yes

15 ADA-KNATIVE-23-15 Potential slowloris attack in
Eventing-Gitlab

Low Yes

16 ADA-KNATIVE-23-16 Hard-coded insecure protocol used by
Knative Serving Activator

Low No

21

Knative Security Audit 2023

Issue in third-party dependency
ID ADA-KNATIVE-23-1

Component Eventing-Github

Severity Moderate

Status: Fix in progress

Ada Logics found an issue in a third-party dependency, which is currently being triaged by the
dependency maintainers. Ada Logics have submitted a fix that is pending a merge.

22

Knative Security Audit 2023

3rd-party dependency uses insecure cryptographic
primitive for sensitive data
ID ADA-KNATIVE-23-2

Component Eventing-Github

Severity Informational

Status: Fixed in https://github.com/go-playground/webhooks/pull/173, not yet released

Eventing-Githubʼs handler extracts the payload of incoming requests using the
github.com/go-playground/webhooks/v5/webhooks/github.(Webhook).Parse API. This
parsing routine uses SHA1 to verify incoming signatures against the hooks secret:

https://github.com/go-playground/webhooks/blob/659b2a276b2274719c30d765f4328ed340f01904/githu
b/github.go#L162-L174

if len(hook.secret) > 0 {

signature := r.Header.Get("X-Hub-Signature")

if len(signature) == 0 {

return nil, ErrMissingHubSignatureHeader

}

mac := hmac.New(sha1.New, []byte(hook.secret))

_, _ = mac.Write(payload)

expectedMAC := hex.EncodeToString(mac.Sum(nil))

if !hmac.Equal([]byte(signature[5:]), []byte(expectedMAC)) {

return nil, ErrHMACVerificationFailed

}

}

SHA1 is broken for some use cases and NIST has declared that it should be fully phased out by
20303. The impact of using SHA1 in this scenario is low but does not represent best practices.

SHA256 version is available:
https://docs.github.com/en/webhooks-and-events/webhooks/securing-your-webhooks#validatin
g-payloads-from-github

A third-party contributor has already made a PR for this issue which is pending merge:
https://github.com/go-playground/webhooks/pull/173

3 https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm

23

https://github.com/go-playground/webhooks/pull/173
https://github.com/go-playground/webhooks/blob/659b2a276b2274719c30d765f4328ed340f01904/github/github.go#L162-L174
https://github.com/go-playground/webhooks/blob/659b2a276b2274719c30d765f4328ed340f01904/github/github.go#L162-L174
https://docs.github.com/en/webhooks-and-events/webhooks/securing-your-webhooks#validating-payloads-from-github
https://docs.github.com/en/webhooks-and-events/webhooks/securing-your-webhooks#validating-payloads-from-github
https://github.com/go-playground/webhooks/pull/173
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm

Knative Security Audit 2023

Slice bound out of range in 3rd-party dependency
ID ADA-KNATIVE-23-3

Component Eventing-Github

Severity Informational

Status: Fixed in https://github.com/go-playground/webhooks/pull/173, not yet released

Eventing-Githubʼs handler extracts the payload of incoming requests using the
github.com/go-playground/webhooks/v5/webhooks/github.(Webhook).Parse API. This
parsing routine has a slice bounds out of range from reading a string signature without checking its
length first:

https://github.com/go-playground/webhooks/blob/659b2a276b2274719c30d765f4328ed340f01904/githu
b/github.go#L162-L174

if len(hook.secret) > 0 {

signature := r.Header.Get("X-Hub-Signature")

if len(signature) == 0 {

return nil, ErrMissingHubSignatureHeader

}

mac := hmac.New(sha1.New, []byte(hook.secret))

_, _ = mac.Write(payload)

expectedMAC := hex.EncodeToString(mac.Sum(nil))

if !hmac.Equal([]byte(signature[5:]), []byte(expectedMAC)) {

return nil, ErrHMACVerificationFailed

}

}

This is a recoverable issue with limited impact.

24

https://github.com/go-playground/webhooks/pull/173
https://github.com/go-playground/webhooks/blob/659b2a276b2274719c30d765f4328ed340f01904/github/github.go#L162-L174
https://github.com/go-playground/webhooks/blob/659b2a276b2274719c30d765f4328ed340f01904/github/github.go#L162-L174

Knative Security Audit 2023

Two potential slowloris attacks in eventing-github
ID ADA-KNATIVE-23-4

Component Eventing-Github

Severity Low

Status: Fixed

Slowloris is a type of attack where an attacker opens a connection between their controlled
machine and the victim's server. Once the attacker has opened the connection, they keep it open
for as long as possible. They will do the same with a large number of controlled machines to hog
the available connections and prevent other users from accessing the service. As such, the victim's
server stays up but remains busy from processing the attacker's requests and becomes unavailable
to legitimate users.

An attacker can exploit a Slowloris issue by identifying execution paths in their target application
that cause it to take longer time to return from, and the attacker can then send requests that force
the application into these. The fact that the Eventing-Github server is susceptible to a Slowloris
attack does not mean that it is easily exploitable.

The following servers do not set a ReadHeaderTimeoutwhich could lead do a DDoS attack, where
a large group of users send requests to the server causing the server to hang for long enough to
deny it from being available to other users, also known as a Slowloris attack:

https://github.com/knative-extensions/eventing-github/blob/2e12b307bb8905dbc8dad8dedc475e5f34ef
8efb/pkg/mtadapter/adapter.go#L89-L91

server := &http.Server{

Addr: fmt.Sprintf(":%d", a.port),

Handler: a.router,

}

https://github.com/knative-extensions/eventing-github/blob/9c53cef7fa9a884d65523772216e9fe870d766
3f/pkg/adapter/adapter.go#L81-L84

server := &http.Server{

Addr: ":" + a.port,

Handler: a.newRouter(),

}

An attacker needs a way to cause eventing-github to run slowly such that multiple invocations
would generate a queue of pending requests. The fact that the ReadHeaderTimeout is not set does
not mean that a Slowloris attack is possible, however, even if an attacker is not able to cause

25

https://github.com/knative-extensions/eventing-github/blob/2e12b307bb8905dbc8dad8dedc475e5f34ef8efb/pkg/mtadapter/adapter.go#L89-L91
https://github.com/knative-extensions/eventing-github/blob/2e12b307bb8905dbc8dad8dedc475e5f34ef8efb/pkg/mtadapter/adapter.go#L89-L91
https://github.com/knative-extensions/eventing-github/blob/9c53cef7fa9a884d65523772216e9fe870d7663f/pkg/adapter/adapter.go#L81-L84
https://github.com/knative-extensions/eventing-github/blob/9c53cef7fa9a884d65523772216e9fe870d7663f/pkg/adapter/adapter.go#L81-L84

Knative Security Audit 2023

eventing-github to run slowly, we advise that ReadHeaderTimeout be added to guard against any
Slowloris attacks in the future.

26

Knative Security Audit 2023

Security Guard exposes profiling endpoints by default
ID ADA-KNATIVE-23-5

Component Security Guard

Severity Low

Status: Fixed

Exposed profiling endpoints may reveal sensitive data to attackers that are in a position to access
them. Profiling endpoints should not be enabled by default; rather, they should be exposed if the
user specifically enables them. Security Guard has two cases where profiling endpoints are
enabled by default.

https://github.com/knative-extensions/security-guard/blob/76f34f56713ca88c6813d732ff2e27938f0d5195
/pkg/iodup/iodup.go#L22

import (

"fmt"

"io"

_ "net/http/pprof"

"sync"

"time"

)

https://github.com/knative-extensions/security-guard/blob/76f34f56713ca88c6813d732ff2e27938f0d5195
/pkg/guard-gate/gate.go#L28

import (

"context"

"errors"

"net/http"

"os"

"regexp"

"strings"

"time"

_ "net/http/pprof"

pi "knative.dev/security-guard/pkg/pluginterfaces"

)

27

https://github.com/knative-extensions/security-guard/blob/76f34f56713ca88c6813d732ff2e27938f0d5195/pkg/iodup/iodup.go#L22
https://github.com/knative-extensions/security-guard/blob/76f34f56713ca88c6813d732ff2e27938f0d5195/pkg/iodup/iodup.go#L22
https://github.com/knative-extensions/security-guard/blob/76f34f56713ca88c6813d732ff2e27938f0d5195/pkg/guard-gate/gate.go#L28
https://github.com/knative-extensions/security-guard/blob/76f34f56713ca88c6813d732ff2e27938f0d5195/pkg/guard-gate/gate.go#L28

Knative Security Audit 2023

Two potential slowloris attacks in Security Guard
ID ADA-KNATIVE-23-6

Component Security Guard

Severity Low

Status: Fixed

Slowloris is a type of attack where an attacker opens a connection between their controlled
machine and the victim's server. Once the attacker has opened the connection, they keep it open
for as long as possible. They will do the same with a large number of controlled machines to hog
the available connections and prevent other users from accessing the service. As such, the victim's
server stays up but remains busy from processing the attacker's requests and becomes unavailable
to legitimate users.

An attacker can exploit a Slowloris issue by identifying execution paths in their target application
that cause it to take longer time to return from, and the attacker can then send requests that force
the application into these. The fact that the Security-Guard server is susceptible to a Slowloris
attack does not mean that it is easily exploitable.

The following servers do not set a ReadHeaderTimeout, which could lead do a DDoS attack, where
a large group of users send requests to the server, causing the server to hang for long enough to
deny it from being available to other users, also know as a Slowloris attack:

https://github.com/knative-extensions/security-guard/blob/f3303bbf61dc85eb5ad7a6033e0a1b319f10a4
5d/cmd/guard-webhook/main.go#L269-L275

server := &http.Server{

Handler: mux,

Addr: ":8443",

TLSConfig: &tls.Config{

Certificates: []tls.Certificate{serverCert},

},

}

https://github.com/knative-extensions/security-guard/blob/f3303bbf61dc85eb5ad7a6033e0a1b319f10a4
5d/cmd/guard-rproxy/main.go#L202-L205

srv := &http.Server{

Addr: target,

Handler: mux,

}

28

https://github.com/knative-extensions/security-guard/blob/f3303bbf61dc85eb5ad7a6033e0a1b319f10a45d/cmd/guard-webhook/main.go#L269-L275
https://github.com/knative-extensions/security-guard/blob/f3303bbf61dc85eb5ad7a6033e0a1b319f10a45d/cmd/guard-webhook/main.go#L269-L275
https://github.com/knative-extensions/security-guard/blob/f3303bbf61dc85eb5ad7a6033e0a1b319f10a45d/cmd/guard-rproxy/main.go#L202-L205
https://github.com/knative-extensions/security-guard/blob/f3303bbf61dc85eb5ad7a6033e0a1b319f10a45d/cmd/guard-rproxy/main.go#L202-L205

Knative Security Audit 2023

An attacker needs a way to cause Security Guard to run slowly such that multiple invocations
would generate a queue of pending requests. The fact that the ReadHeaderTimeout is not set does
not mean that a Slowloris attack is possible; however, even if an attacker is not able to cause
security-guard to run slowly, we advise that ReadHeaderTimeout be added to defend against any
Slowloris attacks in the future.

29

Knative Security Audit 2023

Remote code execution from lack of image validation in
Knative Func
ID ADA-KNATIVE-23-7

Component Knative Func

Severity High

Status: Fixed

When Knative Func pulls an image to get its config file, Knative does not validate the fetched image
and will not detect any potential tampering.

This issue allows a malicious threat actor to deliver a malicious image to the Knative Func user in
knative.dev/func/pkg/builders/s2i.s2iScriptURLwhich extracts the
io.openshift.s2i.scripts-url label of an image and passes them onto the builder. Labels are
optional pieces of metadata about a container image. The io.openshift.s2i.scripts-url label
is typically used to run assemble and run4 scripts for S2I builder images. The
io.openshift.s2i.scripts-url points to a directory which contains executable scripts used for
packaging and running an artifact. These are typically an assemble script and a run script; The
assemble script builds the applications artifacts and the run script runs the application. They can
be implemented in any programming language that allows them to be executable in the S2I
builder image.

To exploit this vulnerability in Knative Func, an attacker needs to control the registry that the
image reference points to, and they need to be able to return a malicious image to the Knative
Func user. They could achieve this position for example by compromising a user account of the
image on the registry, by overtaking a forgotten user on the registry, achieving admin status of the
image on the registry by asking for it or by compromising the registry. With this position, the
attacker is able to return their ownmalicious image to the Knative Func user. The attacker will cra�
an image with the label "io.openshift.s2i.scripts-url"with a URL to malicious scripts that
the attacker wants to execute in the victimʼs Dockerfile. This URL can be local or remote. When the
Knative Func user builds a function using the S2I builder, the workflow proceeds as follows.

The attacker delivers a malicious image with a config file containing a URL to a malicious script.
Below, the attacker controls the cfg in a successful attack.

4 https://docs.openshi�.com/container-platform/3.11/creating_images/s2i.html#s2i-scripts

30

https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html#s2i-scripts

Knative Security Audit 2023

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/b
uilder.go#L359

func s2iScriptURL(ctx context.Context, cli DockerClient, image string) (string, error) {

img, _, err := cli.ImageInspectWithRaw(ctx, image)

if err != nil {

if dockerClient.IsErrNotFound(err) { // image is not in the daemon, get

info directly from registry

var (

ref name.Reference

img v1.Image

cfg *v1.ConfigFile

)

ref, err = name.ParseReference(image)

if err != nil {

return "", fmt.Errorf("cannot parse image name: %w", err)

}

img, err = remote.Image(ref)

if err != nil {

return "", fmt.Errorf("cannot get image from registry: %w",

err)

}

cfg, err = img.ConfigFile()

if err != nil {

return "", fmt.Errorf("cannot get config for image: %w",

err)

}

if cfg.Config.Labels != nil {

if u, ok :=

cfg.Config.Labels["io.openshift.s2i.scripts-url"]; ok {

return u, nil

}

}

}

return "", err

}

if img.Config != nil && img.Config.Labels != nil {

if u, ok := img.Config.Labels["io.openshift.s2i.scripts-url"]; ok {

return u, nil

}

}

if img.ContainerConfig != nil && img.ContainerConfig.Labels != nil {

if u, ok := img.ContainerConfig.Labels["io.openshift.s2i.scripts-url"]; ok

{

return u, nil

}

}

return "", nil

}

31

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L359
https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L359

Knative Security Audit 2023

The value of io.openshift.s2i.scripts-url gets stored in the build cfg:

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/b
uilder.go#L187

scriptURL, err := s2iScriptURL(ctx, client, cfg.BuilderImage)

if err != nil {

return fmt.Errorf("cannot get s2i script url: %w", err)

}

cfg.ScriptsURL = scriptURL

The S2I builder builds using the parameter:

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/b
uilder.go#L229-L232

result, err := impl.Build(cfg)

if err != nil {

return

}

In the case of the Dockerfile strategy implementation, S2I will fetch the attacker-provided scripts:

https://github.com/openshi�/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pk
g/build/strategies/dockerfile/dockerfile.go#L352

// Install scripts provided by user, overriding all others.

// This _could_ be an image:// URL, which would override any scripts above.

urlScripts := builder.installScripts(config.ScriptsURL, config)

installScripts creates a new installer and installs the scripts:

https://github.com/openshi�/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pk
g/build/strategies/dockerfile/dockerfile.go#L395-L409

func (builder *Dockerfile) installScripts(scriptsURL string, config *api.Config)

[]api.InstallResult {

scriptInstaller := scripts.NewInstaller(

"",

scriptsURL,

config.ScriptDownloadProxyConfig,

nil,

api.AuthConfig{},

builder.fs,

config,

32

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L187
https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L187
https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L229-L232
https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L229-L232
https://github.com/openshift/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pkg/build/strategies/dockerfile/dockerfile.go#L352
https://github.com/openshift/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pkg/build/strategies/dockerfile/dockerfile.go#L352
https://github.com/openshift/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pkg/build/strategies/dockerfile/dockerfile.go#L395-L409
https://github.com/openshift/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pkg/build/strategies/dockerfile/dockerfile.go#L395-L409

Knative Security Audit 2023

)

// all scripts are optional, we trust the image contains scripts if we don't find

them

// in the source repo.

return scriptInstaller.InstallOptional(append(scripts.RequiredScripts,

scripts.OptionalScripts...), config.WorkingDir)

}

The scripts installer has different implementations based on the type of scripts. One of these is the
URLScriptHandlerwhich downloads the scripts from a URL:

https://github.com/openshi�/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pk
g/scripts/install.go#L74-L111

func (s *URLScriptHandler) Get(script string) *api.InstallResult {

if len(s.URL) == 0 {

return nil

}

scriptURL, err := url.ParseRequestURI(s.URL + "/" + script)

if err != nil {

log.Infof("invalid script url %q: %v", s.URL, err)

return nil

}

return &api.InstallResult{

Script: script,

URL: scriptURL.String(),

}

}

// Install downloads the script and fix its permissions.

func (s *URLScriptHandler) Install(r *api.InstallResult) error {

downloadURL, err := url.Parse(r.URL)

if err != nil {

return err

}

dst := filepath.Join(s.DestinationDir, constants.UploadScripts, r.Script)

if _, err := s.Download.Download(downloadURL, dst); err != nil {

if e, ok := err.(s2ierr.Error); ok {

if e.ErrorCode == s2ierr.ScriptsInsideImageError {

r.Installed = true

return nil

}

}

return err

}

if err := s.FS.Chmod(dst, 0755); err != nil {

return err

}

r.Installed = true

r.Downloaded = true

return nil

33

https://github.com/openshift/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pkg/scripts/install.go#L74-L111
https://github.com/openshift/source-to-image/blob/980ca195116928b3beb61b25d5939d0044b3040b/pkg/scripts/install.go#L74-L111

Knative Security Audit 2023

}

34

Knative Security Audit 2023

Lack of logging in case image is referenced by tag
ID ADA-KNATIVE-23-8

Component Knative Func

Severity Moderate

Status: Fixed

Knative Func does not log a warning in case a user references an image by tag. Referencing by tag
is the worse practice of the two options and increases the likelihood for a threat actor to tamper
with the image:

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/b
uilder.go#L345-L390

func s2iScriptURL(ctx context.Context, cli DockerClient, image string) (string, error) {

img, _, err := cli.ImageInspectWithRaw(ctx, image)

if err != nil {

if dockerClient.IsErrNotFound(err) { // image is not in the daemon, get

info directly from registry

var (

ref name.Reference

img v1.Image

cfg *v1.ConfigFile

)

ref, err = name.ParseReference(image)

if err != nil {

return "", fmt.Errorf("cannot parse image name: %w", err)

}

img, err = remote.Image(ref)

if err != nil {

return "", fmt.Errorf("cannot get image from registry: %w",

err)

}

cfg, err = img.ConfigFile()

if err != nil {

return "", fmt.Errorf("cannot get config for image: %w",

err)

}

if cfg.Config.Labels != nil {

if u, ok :=

cfg.Config.Labels["io.openshift.s2i.scripts-url"]; ok {

return u, nil

}

}

}

return "", err

}

35

https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L345-L390
https://github.com/knative/func/blob/c15450177a44aa98f8ccc50d0a787b01594ce915/pkg/builders/s2i/builder.go#L345-L390

Knative Security Audit 2023

if img.Config != nil && img.Config.Labels != nil {

if u, ok := img.Config.Labels["io.openshift.s2i.scripts-url"]; ok {

return u, nil

}

}

if img.ContainerConfig != nil && img.ContainerConfig.Labels != nil {

if u, ok := img.ContainerConfig.Labels["io.openshift.s2i.scripts-url"]; ok

{

return u, nil

}

}

return "", nil

}

36

Knative Security Audit 2023

Possible infinity loop over untrusted image
ID ADA-KNATIVE-23-9

Component Knative Func

Severity Moderate

Status: Fixed

Knative Func loops over the index manifests of an image coming from the registry without
enforcing a limit to the number of manifests. This could allow amalicious image to cause an
infinite loop in Knative Func with a high number of manifests. To utilize this vulnerability, the
attacker needs to control the registry fromwhich Knative Func fetches the image or be able to
control the response in another way when Knative Func sends the request to the registry.

https://github.com/knative/func/blob/5a4803bf959852737a25ed558dcae891b80ab30f/pkg/docker/platfo
rm.go#L63

func GetPlatformImage(ref, platform string) (string, error) {

plat, err := platforms.Parse(platform)

if err != nil {

return "", fmt.Errorf("cannot parse platform: %w", err)

}

r, err := name.ParseReference(ref)

if err != nil {

return "", fmt.Errorf("cannot parse reference: %w", err)

}

desc, err := remote.Get(r)

if err != nil {

return "", fmt.Errorf("cannot get remote image: %w", err)

}

if desc.MediaType != gcrTypes.OCIImageIndex && desc.MediaType !=

gcrTypes.DockerManifestList {

// it's non-multi-arch image

var img v1.Image

var cfg *v1.ConfigFile

img, err = desc.Image()

if err != nil {

return "", fmt.Errorf("cannot get image from the descriptor: %w",

err)

}

cfg, err = img.ConfigFile()

if err != nil {

return "", fmt.Errorf("cannot get config file for the image: %w",

err)

}

37

https://github.com/knative/func/blob/5a4803bf959852737a25ed558dcae891b80ab30f/pkg/docker/platform.go#L63
https://github.com/knative/func/blob/5a4803bf959852737a25ed558dcae891b80ab30f/pkg/docker/platform.go#L63

Knative Security Audit 2023

if plat.OS == cfg.OS &&

plat.Architecture == cfg.Architecture {

return ref, nil

}

return "", fmt.Errorf("the %q platform is not supported by the %q image",

platform, ref)

}

idx, err := desc.ImageIndex()

if err != nil {

return "", fmt.Errorf("cannot get image index: %w", err)

}

idxMft, err := idx.IndexManifest()

if err != nil {

return "", fmt.Errorf("cannot get index manifest: %w", err)

}

for _, manifest := range idxMft.Manifests {

if plat.OS == manifest.Platform.OS &&

plat.Architecture == manifest.Platform.Architecture {

return r.Context().Name() + "@" + manifest.Digest.String(), nil

}

}

return "", fmt.Errorf("the %q platform is not supported by the %q image",

platform, ref)

}

38

Knative Security Audit 2023

Attacker-controlled pod can cause denial of service of
autoscaler
ID ADA-KNATIVE-23-10

Component Knative Serving

Severity Moderate

Status: Fixed

An attacker who controls a pod to a degree where they can control the responses from the
/metrics endpoint can cause Denial-of-Service of the autoscaler from an unboundmemory
allocation bug. When the autoscaler scrapes the metrics of pods, it sends a request to the
/metrics endpoint of each pod and reads the response entirely into memory. The root cause is in
the httpScrapeClient, which parses the response from the pod into a Stat type:

https://github.com/knative/serving/blob/45f7c054f69448695d4e9bc11f5a451b3c9f1eff/pkg/autoscaler/m
etrics/http_scrape_client.go#L54-L71

func (c *httpScrapeClient) Do(req *http.Request) (Stat, error) {

req.Header.Add("Accept", netheader.ProtobufMIMEType)

resp, err := c.httpClient.Do(req)

if err != nil {

return emptyStat, err

}

defer resp.Body.Close()

if resp.StatusCode < http.StatusOK || resp.StatusCode >=

http.StatusMultipleChoices {

return emptyStat, scrapeError{

error: fmt.Errorf("GET request for URL %q returned HTTP

status %v", req.URL.String(), resp.StatusCode),

mightBeMesh: nethttp.IsPotentialMeshErrorResponse(resp),

}

}

if resp.Header.Get("Content-Type") != netheader.ProtobufMIMEType {

return emptyStat, errUnsupportedMetricType

}

return statFromProto(resp.Body)

}

https://github.com/knative/serving/blob/45f7c054f69448695d4e9bc11f5a451b3c9f1eff/pkg/autoscaler/m
etrics/http_scrape_client.go#L80C6-L94

39

https://github.com/knative/serving/blob/45f7c054f69448695d4e9bc11f5a451b3c9f1eff/pkg/autoscaler/metrics/http_scrape_client.go#L54-L71
https://github.com/knative/serving/blob/45f7c054f69448695d4e9bc11f5a451b3c9f1eff/pkg/autoscaler/metrics/http_scrape_client.go#L54-L71
https://github.com/knative/serving/blob/45f7c054f69448695d4e9bc11f5a451b3c9f1eff/pkg/autoscaler/metrics/http_scrape_client.go#L80C6-L94
https://github.com/knative/serving/blob/45f7c054f69448695d4e9bc11f5a451b3c9f1eff/pkg/autoscaler/metrics/http_scrape_client.go#L80C6-L94

Knative Security Audit 2023

func statFromProto(body io.Reader) (Stat, error) {

var stat Stat

b := pool.Get().(*bytes.Buffer)

b.Reset()

defer pool.Put(b)

_, err := b.ReadFrom(body)

if err != nil {

return emptyStat, fmt.Errorf("reading body failed: %w", err)

}

err = stat.Unmarshal(b.Bytes())

if err != nil {

return emptyStat, fmt.Errorf("unmarshalling failed: %w", err)

}

return stat, nil

}

During that parsing routine, Knative Serving will first read the body of the response into a buffer
and then read the buffer into memory.

This is illustrated by adding the following unit test to
pkg/autoscaler/metrics/http_scrape_client_test.go:

POC

func TestStats(t *testing.T) {

b := bytes.Repeat([]byte("1337"), 1000000000)

r1 := bytes.NewReader(b)

r2 := bytes.NewReader(b)

mr := io.MultiReader(r1, r2)

statFromProto(mr)

}

This unit test will perform a sig kill with a temporary, machine-wide denial of service. On an 8-core
machine, the machine freezes for around 20-30 seconds before Go performs a SigKill.

[WARNING: SAVE ALL WORK BEFORE REPRODUCING]
To test out the reproducer, run:

go test -run=TestStats

Now observe the memory usage and wait for the following stacktrace:

signal: killed

FAIL knative.dev/serving/pkg/autoscaler/metrics 69.719s

40

Knative Security Audit 2023

Out of bounds read panic in Security-guard authentication
ID ADA-KNATIVE-23-11

Component Knative Security Guard

Severity Informational

Status: Fixed

Security-guards guard-services baseHandler reads the userʼs token when authenticating the
request:

baseHandler is invoked as part of the handler for the sync endpoint - processSync - of the
Security Guard learner:

https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5
c1/cmd/guard-service/main.go#L332-L344

func (l *learner) init() (srv *http.Server, quit chan bool, flushed chan bool) {

l.tokens = make(map[string]*tokenData)

l.pileLearnTicker = utils.NewTicker(time.Second)

l.pileLearnTicker.Start()

l.chacheTokenTicker = utils.NewTicker(time.Minute * 10)

l.chacheTokenTicker.Start()

l.services = newServices()

mux := http.NewServeMux()

mux.HandleFunc("/sync", l.processSync)

processSync invokes baseHandler to retrieve a record and the pod name:

https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5
c1/cmd/guard-service/main.go#L236C1-L243C3

func (l *learner) processSync(w http.ResponseWriter, req *http.Request) {

var syncReq spec.SyncMessageReq

var syncResp spec.SyncMessageResp

record, podname, err := l.baseHandler(w, req)

if err != nil {

return

}

41

https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L332-L344
https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L332-L344
https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L236C1-L243C3
https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L236C1-L243C3

Knative Security Audit 2023

baseHandler first authenticates the request before retrieving the record and pod name. Below, the
highlighted line shows where baseHandler authenticates the request:

https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5
c1/cmd/guard-service/main.go#L197-L234

func (l *learner) baseHandler(w http.ResponseWriter, req *http.Request) (record

*serviceRecord, podname string, err error) {

var sid, ns string

var cmFlag bool

if l.env.GuardServiceAuth != "false" {

cmFlag, err = l.queryDataAuth(req.URL.Query())

if err != nil {

pi.Log.Infof("queryData failed with %v", err)

http.Error(w, err.Error(), http.StatusBadRequest)

return

}

podname, sid, ns, err = l.authenticate(req)

if err != nil {

pi.Log.Infof("authenticate failed with %v", err)

http.Error(w, err.Error(), http.StatusUnauthorized)

return

}

} else {

cmFlag, podname, sid, ns, err = l.queryDataNoAuth(req.URL.Query())

if err != nil {

pi.Log.Infof("queryData failed with %v", err)

http.Error(w, err.Error(), http.StatusBadRequest)

return

}

}

// get session record, create one if does not exist

record = l.services.get(ns, sid, cmFlag)

if record == nil {

// should never happen

err = fmt.Errorf("no record created")

pi.Log.Infof("internal error %v for request ns %s, sid %s, pod %s, cmFlag

%t", err, ns, sid, podname, cmFlag)

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

return

}

When authenticating the request, Security Guard gets a token from a header of the request and
reads it from index 7 on the line below.

https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5
c1/cmd/guard-service/main.go#L104-L115

42

https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L197-L234
https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L197-L234
https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L104-L115
https://github.com/knative-extensions/security-guard/blob/39559b7f81b973dd34ebb335b84053bd547cf5c1/cmd/guard-service/main.go#L104-L115

Knative Security Audit 2023

func (l *learner) authenticate(req *http.Request) (podname string, sid string, ns

string, err error) {

token := req.Header.Get("Authorization")

if !strings.HasPrefix(token, "Bearer ") {

err = fmt.Errorf("missing token")

return

}

token = token[7:]

// Check token cache

if tokenData := l.getToken(token); tokenData != nil {

return tokenData.podname, tokenData.sid, tokenData.ns, nil

}

At this line, Security Guard has not checked the length of the token, and it may be shorter than 7
characters. If it is, Go will panic with an out of bounds panic. This panic is recoverable and the
impact is limited.

43

Knative Security Audit 2023

Missing SECURITY.md file
ID ADA-KNATIVE-23-12

Component Security Guard

Severity Informational

Status: Fixed

Knative offers a way to disclose security issues, but this is currently not communicated at a
repository level.

Not having a security policy can result in Knative missing out on valuable community-driven
security contributions and disclosures. Security researchers who wish to do their own auditing of
the Knative ecosystem and whomay have identified security vulnerabilities in the Knative code
base will not knowwhere or to whom to disclose their findings. Certainly, disclosing potential
security-critical bugs in the Knative subprojectsʼ public Github issues is not an approachmany
researchers will take. Without a security policy, it is difficult to guess who from a given Knative
subproject is trusted enough and has enough bandwidth to process incoming security disclosures.
This in itself has the dilemma of a responsible disclosure timeline; i.e. when security contributors
maymake their findings public a�er disclosing it to Knative; Most projects follow an industry
standard of 90 day responsible disclosure timeline; however users will now knowwhat Knatives is
in case of a non-existent security policy. Furthermore, without a security policy, contributors will
not knowwhat constitutes the start of the responsible disclosure timeline: In the case of the 90
days, when do they start?

We recommend that each Knative subproject adds a security policy, whether they are similar or
identical. Ideally, the security policy should be readily available for the community, and we also
recommend placing the security policy at the root directory of each Knative repository. Each
repositoryʼs security policy should contain a link to the part of the documentation where the
community can disclose vulnerabilities
(https://knative.dev/docs/reference/security/#security-working-group).

44

https://knative.dev/docs/reference/security/#security-working-group

Knative Security Audit 2023

Possible DoS in Security Guard /sync endpoint
ID ADA-KNATIVE-23-13

Component Security Guard

Severity Moderate

Status: Fixed

An attacker who can send requests to Security Guards /sync endpoint can cause a resource
exhaustion denial of service attack by sending an HTTP request containing a large body. Security
Guard guard-service will read the entire body into memory, and Golang will perform a SigKill of
guard-service as a result.

guard-service reads the request body entirely into memory on the line highlighted below:

https://github.com/knative-extensions/security-guard/blob/9dd8b30c7c1e9cd31bbb88898c8228a41919e
690/cmd/guard-service/main.go#L236-L260

func (l *learner) processSync(w http.ResponseWriter, req *http.Request) {

var syncReq spec.SyncMessageReq

var syncResp spec.SyncMessageResp

record, podname, err := l.baseHandler(w, req)

if err != nil {

return

}

if req.Method != "POST" || req.URL.Path != "/sync" {

http.Error(w, "404 not found.", http.StatusNotFound)

return

}

if req.ContentLength == 0 || req.Body == nil {

http.Error(w, "400 not found.", http.StatusBadRequest)

return

}

err = json.NewDecoder(req.Body).Decode(&syncReq)

if err != nil {

pi.Log.Infof("processSync error: %v", err)

http.Error(w, err.Error(), http.StatusBadRequest)

return

}

45

https://github.com/knative-extensions/security-guard/blob/9dd8b30c7c1e9cd31bbb88898c8228a41919e690/cmd/guard-service/main.go#L236-L260
https://github.com/knative-extensions/security-guard/blob/9dd8b30c7c1e9cd31bbb88898c8228a41919e690/cmd/guard-service/main.go#L236-L260

Knative Security Audit 2023

Possible DoS in Security Guard /mutate endpoint
ID ADA-KNATIVE-23-14

Component Security Guard

Severity Moderate

Status: Fixed

An attacker who can send requests to Security Guards /mutate endpoint can cause a resource
exhaustion denial of service attack by sending an HTTP request containing a large body. Security
Guards guard-servicewill read the entire body into memory, and Golang will perform a SigKill of
guard-service as a result.

Security Guard reads the request body entirely into memory on the line highlighted below:

https://github.com/knative-extensions/security-guard/blob/9dd8b30c7c1e9cd31bbb88898c8228a41919e
690/cmd/guard-webhook/main.go#L63C1-L77C1

func serveMutate(w http.ResponseWriter, r *http.Request) {

var body []byte

if r.Body != nil {

if data, err := ioutil.ReadAll(r.Body); err == nil {

body = data

}

}

// verify the content type is accurate

contentType := r.Header.Get("Content-Type")

if contentType != "application/json" {

Log.Error("contentType=%s, expect application/json", contentType)

return

}

46

https://github.com/knative-extensions/security-guard/blob/9dd8b30c7c1e9cd31bbb88898c8228a41919e690/cmd/guard-webhook/main.go#L63C1-L77C1
https://github.com/knative-extensions/security-guard/blob/9dd8b30c7c1e9cd31bbb88898c8228a41919e690/cmd/guard-webhook/main.go#L63C1-L77C1

Knative Security Audit 2023

Potential slowloris attacks in Eventing-Gitlab
ID ADA-KNATIVE-23-15

Component Eventing-Gitlab

Severity Low

Status: Fixed

Slowloris is a type of attack where an attacker opens a connection between their controlled
machine and the victim's server. Once the attacker has opened the connection, they keep it open
for as long as possible. They will do the same with a large number of controlled machines to hog
the available connections and prevent other users from accessing the service. As such, the victim's
server stays up but remains busy from processing the attacker's requests and becomes unavailable
to legitimate users.

An attacker can exploit a Slowloris issue by identifying execution paths in their target application
that cause it to take longer time to return from, and the attacker can then send requests that force
the application into these. The fact that the Eventing-Gitlab server is susceptible to a Slowloris
attack does not mean that it is easily exploitable.

The following server does not set a ReadHeaderTimeout, which could lead to a DDoS attack, where
a large group of users send requests to the server, causing the server to hang for long enough to
deny it from being available to other users, also known as a Slowloris attack:

https://github.com/knative-extensions/eventing-gitlab/blob/3221536fea4ea5b60ac06ef701d01411f9453c
7d/pkg/adapter/receive_adapter.go#L94-L97

server := &http.Server{

Addr: ":" + ra.port,

Handler: ra.newRouter(hook),

}

47

https://github.com/knative-extensions/eventing-gitlab/blob/3221536fea4ea5b60ac06ef701d01411f9453c7d/pkg/adapter/receive_adapter.go#L94-L97
https://github.com/knative-extensions/eventing-gitlab/blob/3221536fea4ea5b60ac06ef701d01411f9453c7d/pkg/adapter/receive_adapter.go#L94-L97

Knative Security Audit 2023

Hard-coded insecure protocol used by Knative Serving
Activator
ID ADA-KNATIVE-23-16

Component Knative Serving

Severity Low

Status: Reported

The revisionWatcher of the Knative Serving Activator uses the HTTP protocol when probing the
destination. This could allow an attacker to perform a Man-in-the-middle and return incorrect
information that seemingly originates from the destination.

The root cause of the issue is that the HTTP scheme is hard-coded in the url.Url:

https://github.com/knative/serving/blob/d6c833f98f7abff3d183553d5f0bf01d529d4a84/pkg/activator/net
/revision_backends.go#L163C1-L169C1

func (rw *revisionWatcher) probe(ctx context.Context, dest string) (pass bool, notMesh

bool, err error) {

httpDest := url.URL{

Scheme: "http",

Host: dest,

Path: nethttp.HealthCheckPath,

}

The destination is always a ClusterIP Service or PodIPs, so the ability to inject traffic within the
Cluster IP space implies compromise of the CNI layer.

The Knative team has triaged this issue and has not found any immediate exploitability. The
Knative teamwill triage this further to investigate how to fix this in the optimal way.

48

https://github.com/knative/serving/blob/d6c833f98f7abff3d183553d5f0bf01d529d4a84/pkg/activator/net/revision_backends.go#L163C1-L169C1
https://github.com/knative/serving/blob/d6c833f98f7abff3d183553d5f0bf01d529d4a84/pkg/activator/net/revision_backends.go#L163C1-L169C1

Knative Security Audit 2023

Knative static analysis tooling
In this section, we include our observations concerning Knativeʼs static security testing suite. We
include these as a suggestion for future work on improving Knativeʼs security posture.
Static analysis tools are useful for detecting potential security issues during the development
lifecycle and in production code. When running in the CI, they can test new code contributions for
security issues and help prevent these from getting merged into the codebase.

At a high level, the core Knative projects - Serving and Eventing - have a mature static toolchain
that both runs in the CI and includes inline comments to disable noise for false positives, whereas
most of the Knative-Extensions projects and Knative Func had no static security tooling integrated.
We ran several static tools against the projects in scope and found a few true-positive security
issues that we have included in the findings in this report.

As a general goal, we recommend the Knative runs the following static security tools in their CI
pipeline:

1. Gosec
2. CodeQL
3. Semgrep with selected rules that test for high-impact risks and have a low level of false

positives.

In addition, we recommend Knative adopts other, more cloud-oriented static tools to test for
security issues in resources such as:

1. Checkov
2. KubeAudit
3. KubeScape

These tools are useful for the Knative community to reason about the Knative cluster resources.
For example, a Kubescape scan5 across all Knative code assets in scope found that several
resources include possible security risks:

Severity Control Name Failed
Resources

All
Resources

%
Compliance-Sco

re

High Resource limits 49 78 37%

High Applications credentials in
configuration files

4 219 98%

High Host PID/IPC privileges 0 78 100%

5 v2.9.1

49

Knative Security Audit 2023

High HostNetwork access 0 78 100%

High Insecure capabilities 0 78 100%

High Privileged container 0 78 100%

High CVE-2021-25742-nginx-ingress-sni
ppet-annotation-vulnerability

0 0 100%

Medium Exec into container 0 163 100%

Medium Non-root containers 35 78 55%

Medium Allow privilege escalation 34 78 56%

Medium Ingress and Egress blocked 75 78 4%

Medium Automatic mapping of service
account

54 131 59%

Medium Cluster-admin binding 0 163 100%

Medium Container hostPort 0 78 100%

Medium Cluster internal networking 23 23 0%

Medium Linux hardening 35 78 55%

Low Immutable container filesystem 35 78 55%

Low PSP enabled 0 0 100%

Furthermore, integrating these tools may have implications on adoption; Kubescape tests for the
security guidelines set forth by NSA and CISA in the Kubernetes Hardening Guidance. Proving that
Knative adheres to these guidelines may increase adoption across critical industries required to
comply with the Kubernetes Hardening Guidance from internal policies, downstream users or
public regulations.

50

